Suppr超能文献

使用序列-结构基序库预测蛋白质中的局部结构。

Prediction of local structure in proteins using a library of sequence-structure motifs.

作者信息

Bystroff C, Baker D

机构信息

Department of Biochemistry, University of Washington, Seattle, WA, 98195-7350, USA.

出版信息

J Mol Biol. 1998 Aug 21;281(3):565-77. doi: 10.1006/jmbi.1998.1943.

Abstract

We describe a new method for local protein structure prediction based on a library of short sequence pattern that correlate strongly with protein three-dimensional structural elements. The library was generated using an automated method for finding correlations between protein sequence and local structure, and contains most previously described local sequence-structure correlations as well as new relationships, including a diverging type-II beta-turn, a frayed helix, and a proline-terminated helix. The query sequence is scanned for segments 7 to 19 residues in length that strongly match one of the 82 patterns in the library. Matching segments are assigned the three-dimensional structure characteristic of the corresponding sequence pattern, and backbone torsion angles for the entire query sequence are then predicted by piecing together mutually compatible segment predictions. In predictions of local structure in a test set of 55 proteins, about 50% of all residues, and 76% of residues covered by high-confidence predictions, were found in eight-residue segments within 1.4 A of their true structures. The predictions are complementary to traditional secondary structure predictions because they are considerably more specific in turn regions, and may contribute to ab initio tertiary structure prediction and fold recognition.

摘要

我们描述了一种基于短序列模式库进行局部蛋白质结构预测的新方法,这些短序列模式与蛋白质三维结构元件密切相关。该库是使用一种自动方法生成的,用于寻找蛋白质序列与局部结构之间的相关性,它包含了大多数先前描述的局部序列-结构相关性以及新的关系,包括一种发散型II型β-转角、一种松散螺旋和一种脯氨酸终止螺旋。对查询序列扫描长度为7至19个残基的片段,这些片段要与库中82种模式之一高度匹配。匹配的片段被赋予相应序列模式的三维结构特征,然后通过拼接相互兼容的片段预测来预测整个查询序列的主链扭转角。在对55种蛋白质的测试集进行局部结构预测时,在其真实结构1.4埃范围内的八残基片段中,发现约50%的所有残基以及76%的高可信度预测覆盖的残基与预测结果相符。这些预测与传统的二级结构预测互为补充,因为它们在转角区域的特异性要高得多,并且可能有助于从头进行三级结构预测和折叠识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验