Suppr超能文献

广义估计方程(GEE)程序在重复测量实验样本量计算中的应用。

Application of GEE procedures for sample size calculations in repeated measures experiments.

作者信息

Rochon J

机构信息

Biostatistics Center, George Washington University, Rockville, MD 20852, USA.

出版信息

Stat Med. 1998 Jul 30;17(14):1643-58. doi: 10.1002/(sici)1097-0258(19980730)17:14<1643::aid-sim869>3.0.co;2-3.

Abstract

Derivation of the minimum sample size is an important consideration in an applied research effort. When the outcome is measured at a single time point, sample size procedures are well known and widely applied. The corresponding situation for longitudinal designs, however, is less well developed. In this paper, we adapt the generalized estimating equation (GEE) approach of Liang and Zeger to sample size calculations for discrete and continuous outcome variables. The non-central version of the Wald Chi 2 test is considered. We use the damped exponential family of correlation structures described in Muñoz et al. for the 'working' correlation matrix among the repeated measures. We present a table of minimum sample sizes for binary outcomes, and discuss extensions that account for unequal allocation, staggered entry and loss to follow-up.

摘要

在应用研究中,推导最小样本量是一个重要的考量因素。当在单个时间点测量结果时,样本量计算方法广为人知且应用广泛。然而,纵向设计的相应情况发展得尚不充分。在本文中,我们将Liang和Zeger的广义估计方程(GEE)方法应用于离散和连续结果变量的样本量计算。考虑了Wald卡方检验的非中心版本。我们使用Muñoz等人描述的阻尼指数族相关结构来构建重复测量之间的“工作”相关矩阵。我们给出了二元结果的最小样本量表,并讨论了考虑不均衡分配、交错入组和失访情况的扩展内容。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验