Suppr超能文献

Prenatal diagnosis of ornithine transcarbamylase deficiency by using a single nucleated erythrocyte from maternal blood.

作者信息

Watanabe A, Sekizawa A, Taguchi A, Saito H, Yanaihara T, Shimazu M, Matsuda I

机构信息

Department of Obstetrics and Gynecology, Showa University, School of Medicine, Tokyo, Japan.

出版信息

Hum Genet. 1998 Jun;102(6):611-5. doi: 10.1007/s004390050750.

Abstract

We have developed a method that allows the prenatal DNA diagnosis of ornithine transcarbamylase (OTC) deficiency by using a single fetal nucleated erythrocyte (NRBC) isolated from maternal blood. OTC gene analysis of a male patient (TF) with early onset OTC deficiency was performed by single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing. To investigate the possible prenatal diagnosis of OTC deficiency, maternal blood was obtained at 13 weeks of gestation of a subsequent pregnancy, from the mother of patient TF. NRBCs in the maternal blood were separated by using the density gradient method and then collected with a micromanipulator. The entire genome of a single NRBC was amplified by primer extension preamplification (PEP). The human leukocyte antigen (HLA)-DQ alpha genotype and sex were determined from small aliquots of the PEP product. The HLA-DQ alpha genotype of each of the parents of the male patient was also determined. Once a single NRBC had been identified as being of fetal origin, the OTC gene was analyzed by using the restriction fragment length polymorphism (RFLP) method. DNA analysis revealed a point mutation in exon 9 of the OTC gene in the OTC-deficient patient (TF). All NRBCs retrieved from maternal blood were successfully identified as being of fetal origin by HLA-DQ alpha genotyping and sex determination. RFLP analysis demonstrated that the fetal OTC gene was normal. This is the first study to successfully diagnose OTC deficiency prenatally, by using a single fetal NRBC from the maternal circulation. Such prenatal DNA diagnosis is non-invasive and can be applied to other genetic diseases, including autosomal and X-linked diseases.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验