Suppr超能文献

Molecular packing in virus crystals: geometry, chemistry, and biology.

作者信息

Natarajan P, Johnson J E

机构信息

Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA.

出版信息

J Struct Biol. 1998;121(3):295-305. doi: 10.1006/jsbi.1998.3982.

Abstract

An automated procedure was developed to determine the geometrical and chemical interactions of crystalline virus particles using the crystal parameters, particle position, orientation, and atomic coordinates for an icosahedral asymmetric unit. Two applications of the program are reported: (1) An analysis of a novel pseudo-rhombohedral (R32) symmetry present in the monoclinic crystal lattices of both Nodamura Virus (NOV) and Coxsackie virus B3 (CVB3). The study shows that in both cases the interactions between particles is substantially increased by minor deviations from exact R32 symmetry and that only particles with the proper ratio of dimensions along twofold and fivefold symmetry axes (such as southern bean mosaic virus) can achieve comparable buried surface area in the true R32 space group. (2) An attempt was made to correlate biological function with remarkably conserved interparticle contact regions found in different crystal forms of three members of the nodavirus family, NOV, Flock House Virus (FHV), and Black Beetle Virus (BBV). Mutational evidence implicates the quasi-threefold region on the viral surface in receptor binding in nodaviruses and this region is dominant in particle contacts in all three virus crystals. Examination of particle contacts in numerous crystal structures of viruses in the picornavirus super-family showed that portions of the capsid surface known to interact with a receptor or serve as an epitope for monoclonal antibodies frequently stabilize crystal contacts.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验