Suppr超能文献

稳定热驱动爬升薄膜的前进前沿

Stabilizing the Advancing Front of Thermally Driven Climbing Films.

作者信息

Kataoka DE, Troian SM

机构信息

Department of Chemical Engineering, Princeton University, Princeton, New Jersey, 08544-5263

出版信息

J Colloid Interface Sci. 1998 Jul 15;203(2):335-44. doi: 10.1006/jcis.1998.5499.

Abstract

As known from thermodynamic principles, the surface tension of a liquid decreases with increasing temperature. This property can be used to force a liquid film to climb a vertical substrate whose lower end is held warmer than the top. The vertical gradient in surface tension generates a surface shear stress that causes the liquid film to spread upward spontaneously in the direction of higher surface tension. Experimental investigations have shown that the application of a large temperature gradient produces a thin climbing film whose leading edge develops a pronounced capillary rim which breaks up into vertical rivulets. In contrast, smaller temperature gradients produce thicker films whose profiles decrease monotonically toward the substrate with no evidence of a rim or subsequent film breakup. We have previously shown within linear stability analysis that a climbing film can undergo a fingering instability at the leading edge when the film is sufficiently thin or the shear stress sufficiently large for gravitational effects to be negligible. In this work we show that thicker films which experience significant drainage cannot form a capillary rim and spread in stable fashion. Gravitational drainage helps promote a straight advancing front and complete surface coverage. Our numerical predictions for the entire shape and stability of the climbing film are in good agreement with extensive experiments published years ago by Ludviksson and Lightfoot (AIChE J. 17, 1166 (1971)). We propose that the presence of a counterflow which eliminates the capillary rim can provide a simple and general technique for stabilizing thermally driven films in other geometries. Copyright 1998 Academic Press.

摘要

根据热力学原理可知,液体的表面张力随温度升高而降低。利用这一特性,可以使液膜沿垂直基板爬升,该基板的下端温度高于上端。表面张力的垂直梯度会产生表面剪切应力,使液膜沿表面张力较高的方向自发向上扩展。实验研究表明,施加较大的温度梯度会产生一层薄的爬升液膜,其前缘会形成明显的毛细边缘,毛细边缘会分裂成垂直的细流。相比之下,较小的温度梯度会产生较厚的液膜,其轮廓朝着基板单调减小,没有边缘或后续液膜破裂的迹象。我们之前在线性稳定性分析中表明,当液膜足够薄或剪切应力足够大以至于重力效应可忽略不计时,爬升液膜在前缘会经历指进不稳定性。在这项工作中,我们表明经历显著排水的较厚液膜无法形成毛细边缘,而是以稳定的方式扩展。重力排水有助于形成笔直的推进前沿并实现完全的表面覆盖。我们对爬升液膜的整体形状和稳定性的数值预测与Ludviksson和Lightfoot多年前发表的大量实验结果(《美国化学工程师学会会刊》17, 1166 (1971))高度吻合。我们提出,存在消除毛细边缘的逆流可以提供一种简单通用的技术,用于稳定其他几何形状中的热驱动液膜。版权所有1998年学术出版社。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验