SenGupta AK, Papadopoulos KD
Department of Chemical Engineering, Tulane University, New Orleans, Louisiana, 70118
J Colloid Interface Sci. 1998 Jul 15;203(2):345-53. doi: 10.1006/jcis.1998.5524.
A theoretical framework has been developed for predicting and explaining the colloidal stability of concentrated dispersions. It is based on multiparticle interaction models for the electrical double layer (EDL) and van der Waals (vdW) interactions. An asymmetric cell model is used for estimating EDL interaction energy from the solution of the Poisson-Boltzmann equation. The unretarded vdW interaction energy is calculated via Hamaker's method, adopting the pairwise-additivity approach. Various dispersion parameters are investigated for their effects on the flocculation energy barrier. These include volume fraction, size, and surface potential of particles, as well as the ionic strength of the dispersing medium. The results show several new trends borne out of multiparticle interaction effects. A maximum in the energy barrier is predicted as a function of salinity, contrasting the monotonic dependence from the classical DLVO theory. This salinity dependence of the energy barrier provides the first comprehensive explanation of reported experimental findings on stability and rheological properties of concentrated dispersions. Other predictions include the occurrence of flocculation at a secondary minimum and the particle-size dependent variation of suspension stability with particle volume fraction. Copyright 1998 Academic Press.
已建立一个理论框架来预测和解释浓分散体系的胶体稳定性。它基于双电层(EDL)和范德华(vdW)相互作用的多粒子相互作用模型。使用非对称电池模型从泊松 - 玻尔兹曼方程的解中估计EDL相互作用能。通过哈马克方法采用成对加和法计算非延迟vdW相互作用能。研究了各种分散参数对絮凝能垒的影响。这些参数包括颗粒的体积分数、尺寸和表面电势,以及分散介质的离子强度。结果显示了多粒子相互作用效应带来的几个新趋势。预测能垒随盐度存在最大值,这与经典DLVO理论中的单调依赖性形成对比。能垒的这种盐度依赖性首次全面解释了关于浓分散体系稳定性和流变性质的已报道实验结果。其他预测包括在二级极小值处发生絮凝以及悬浮稳定性随颗粒体积分数的粒度依赖性变化。版权所有1998年学术出版社。