Calingasan N Y, Park L C, Calo L L, Trifiletti R R, Gandy S E, Gibson G E
Cornell University Medical College at Burke Medical Research Institute, White Plains, New York 10605, USA.
Am J Pathol. 1998 Aug;153(2):599-610. doi: 10.1016/S0002-9440(10)65602-7.
Abnormal oxidative processes including a reduction in thiamine-dependent enzymes accompany many neurodegenerative diseases. Thiamine deficiency (TD) models the cellular and molecular mechanisms by which chronic oxidative aberrations associated with thiamine-dependent enzyme deficits cause selective neurodegeneration. The mechanisms underlying selective cell death in TD are unknown. In rodent TD, the earliest region-specific pathological change is breakdown of the blood-brain barrier (BBB). The current studies tested whether nitric oxide and microglia are important in the initial events that couple BBB breakdown to selective neuronal loss. Enhanced expression of endothelial nitric oxide synthase and nicotinamide adenine dinucleotide phosphate diaphorase reactivity in microvessels, as well as the presence of numerous inducible nitric oxide synthase-immunoreactive microglia, accompanied the increases in BBB permeability. Nitric oxide synthase induction appears critical to TD pathology, because immunoreactivity for nitrotyrosine, a specific nitration product of peroxynitrite, also increased in axons of susceptible regions. In addition, TD elevated iron and the antioxidant protein ferritin in microvessels and in activated microglia, suggesting that these cells are responding to an oxidative challenge. All of these changes occurred in selectively vulnerable regions, preceding neuronal death. These findings are consistent with the hypothesis that the free radical-mediated BBB alterations permit entry of iron and extraneuronal proteins that set in motion a cascade of inflammatory responses culminating in selective neuronal loss. Thus, the TD model should help elucidate the relationship between oxidative deficits, BBB abnormalities, the inflammatory response, ferritin and iron elevation, and selective neurodegeneration.
包括硫胺素依赖性酶减少在内的异常氧化过程伴随着许多神经退行性疾病。硫胺素缺乏(TD)模拟了与硫胺素依赖性酶缺乏相关的慢性氧化异常导致选择性神经变性的细胞和分子机制。TD中选择性细胞死亡的潜在机制尚不清楚。在啮齿动物TD中,最早的区域特异性病理变化是血脑屏障(BBB)的破坏。目前的研究测试了一氧化氮和小胶质细胞在将BBB破坏与选择性神经元丢失联系起来的初始事件中是否重要。微血管中内皮型一氧化氮合酶和烟酰胺腺嘌呤二核苷酸磷酸黄递酶反应性的增强表达,以及大量诱导型一氧化氮合酶免疫反应性小胶质细胞的存在,伴随着BBB通透性的增加。一氧化氮合酶的诱导似乎对TD病理学至关重要,因为过氧亚硝酸盐的特定硝化产物硝基酪氨酸的免疫反应性在易感区域的轴突中也增加了。此外,TD使微血管和活化小胶质细胞中的铁和抗氧化蛋白铁蛋白升高,表明这些细胞正在应对氧化应激。所有这些变化都发生在选择性易损区域,早于神经元死亡。这些发现与以下假设一致,即自由基介导的BBB改变允许铁和神经外蛋白进入,从而引发一系列炎症反应,最终导致选择性神经元丢失。因此,TD模型应有助于阐明氧化缺陷、BBB异常、炎症反应、铁蛋白和铁升高与选择性神经变性之间的关系。