Sato T K, Darsow T, Emr S D
Division of Cellular and Molecular Medicine and Department of Biology, Howard Hughes Medical Institute, University of California at San Diego School of Medicine, La Jolla, California 92093-0668, USA.
Mol Cell Biol. 1998 Sep;18(9):5308-19. doi: 10.1128/MCB.18.9.5308.
A genetic screen to isolate gene products required for vacuolar morphogenesis in the yeast Saccharomyces cerevisiae identified VAM7, a gene which encodes a protein containing a predicted coiled-coil domain homologous to the coiled-coil domain of the neuronal t-SNARE, SNAP-25 (Y. Wada and Y. Anraku, J. Biol. Chem. 267:18671-18675, 1992; T. Weimbs, S. H. Low, S. J. Chapin, K. E. Mostov, P. Bucher, and K. Hofmann, Proc. Natl. Acad. Sci. USA 94:3046-3051, 1997). Analysis of a temperature-sensitive-for-function (tsf) allele of VAM7 (vam7(tsf)) demonstrated that the VAM7 gene product directly functions in vacuolar protein transport. vam7(tsf) mutant cells incubated at the nonpermissive temperature displayed rapid defects in the delivery of multiple proteins that traffic to the vacuole via distinct biosynthetic pathways. Examination of vam7(tsf) cells at the nonpermissive temperature by electron microscopy revealed the accumulation of aberrant membranous compartments that may represent unfused transport intermediates. A fraction of Vam7p was localized to vacuolar membranes. Furthermore, VAM7 displayed genetic interactions with the vacuolar syntaxin homolog, VAM3. Consistent with the genetic results, Vam7p physically associated in a complex containing Vam3p, and this interaction was enhanced by inactivation of the yeast NSF (N-ethyl maleimide-sensitive factor) homolog, Sec18p. In addition to the coiled-coil domain, Vam7p also contains a putative NADPH oxidase p40(phox) (PX) domain. Changes in two conserved amino acids within this domain resulted in synthetic phenotypes when combined with the vam3(tsf) mutation, suggesting that the PX domain is required for Vam7p function. This study provides evidence for the functional and physical interaction between Vam7p and Vam3p at the vacuolar membrane, where they function as part of a t-SNARE complex required for the docking and/or fusion of multiple transport intermediates destined for the vacuole.
一项旨在分离酿酒酵母液泡形态发生所需基因产物的遗传筛选鉴定出了VAM7基因,该基因编码一种蛋白质,其预测的卷曲螺旋结构域与神经元t-SNARE蛋白SNAP-25的卷曲螺旋结构域同源(Y. Wada和Y. Anraku,《生物化学杂志》267:18671 - 18675,1992;T. Weimbs、S. H. Low、S. J. Chapin、K. E. Mostov、P. Bucher和K. Hofmann,《美国国家科学院院刊》94:3046 - 3051,1997)。对VAM7的功能温度敏感型(tsf)等位基因(vam7(tsf))的分析表明,VAM7基因产物直接参与液泡蛋白运输。在非允许温度下培养的vam7(tsf)突变细胞在多种通过不同生物合成途径运输到液泡的蛋白质的递送过程中迅速出现缺陷。在非允许温度下通过电子显微镜检查vam7(tsf)细胞发现异常膜性区室的积累,这些区室可能代表未融合的运输中间体。一部分Vam7p定位于液泡膜。此外,VAM7与液泡 syntaxin 同源物VAM3表现出遗传相互作用。与遗传结果一致,Vam7p在一个包含Vam3p的复合物中发生物理结合,并且这种相互作用在酵母NSF(N - 乙基马来酰亚胺敏感因子)同源物Sec18p失活时增强。除了卷曲螺旋结构域,Vam7p还包含一个假定的NADPH氧化酶p40(phox)(PX)结构域。该结构域内两个保守氨基酸的变化与vam3(tsf)突变结合时导致合成表型,表明PX结构域是Vam7p功能所必需的。这项研究为Vam7p和Vam3p在液泡膜上的功能和物理相互作用提供了证据,它们在液泡膜上作为一个t - SNARE复合物的一部分发挥作用,该复合物是多种运往液泡的运输中间体对接和/或融合所必需的。