Zipp F, Kerschensteiner M, Dornmair K, Malotka J, Schmidt S, Bender A, Giegerich G, de Waal Malefyt R, Wekerle H, Hohlfeld R
Department of Neuroimmunology, Max Planck Institute, Martinsried, Germany.
Brain. 1998 Aug;121 ( Pt 8):1395-407. doi: 10.1093/brain/121.8.1395.
More precise understanding of the immune response against T-cell receptors (TCRs) is a prerequisite for successful TCR vaccination therapy of multiple sclerosis and other neurological autoimmune diseases. We conducted a detailed analysis of a paradigmatic anti-TCR response, using synthetic TCR peptides and highly purified recombinant TCR V alpha and Vbeta variable chains for the selection of CD4+ T-cell lines from a healthy volunteer. The target TCR (designated TCR(HWBP-3)) was obtained from HWBP-3, an autologous CD4+ T-cell line specific for myelin basic protein. The V alpha and Vbeta chains of TCR(HWBP-3) were expressed in Escherichia coli and purified by Ni-chelate chromatography and SDS (sodium dodecyl sulphate) gel electrophoresis. Further, we synthesized a set of 13- to 22-mer peptides spanning the complementarity-determining regions (CDR) 1, 2 and 3 and the framework regions (FR) of the alpha and beta chains of TCR(HWBP-3). The TCR peptides and proteins were then used to select a panel of TCR-specific CD4+ T-cell lines from donor HW. Several T-cell lines cross-reacted with a recombinant V chain and synthetic peptide. Cross-reactive immunogenic TCR epitopes were identified in the FR1 and CDR3 regions of the TCR(HWBP-3) alpha chain and in the FR1, CDR1 and CDR2 regions of the TCR(HWBP-3) beta chain. The TCR proteins and peptides were recognized in the context of at least three different HLA-DR molecules [DR2a (DRB50101), DR2b (DRB11501) and DRB11401/DRB30202]. Notably, the majority of the TCR peptide-selected T-cell lines did not react with the full-length recombinant V chains, suggesting they recognize 'cryptic' determinants. Based on the diversity of the anti-TCR immune response, we suggest that candidate TCR peptides should be screened in vitro in functional experiments before they are clinically applied for TCR vaccination therapy.
更精确地了解针对T细胞受体(TCR)的免疫反应是成功进行多发性硬化症和其他神经自身免疫性疾病的TCR疫苗治疗的前提条件。我们使用合成TCR肽和高度纯化的重组TCR Vα和Vβ可变链,对一名健康志愿者的CD4 + T细胞系进行选择,从而对典型的抗TCR反应进行了详细分析。目标TCR(命名为TCR(HWBP - 3))取自HWBP - 3,这是一种对髓鞘碱性蛋白具有特异性的自体CD4 + T细胞系。TCR(HWBP - 3)的Vα和Vβ链在大肠杆菌中表达,并通过镍螯合层析和SDS(十二烷基硫酸钠)凝胶电泳进行纯化。此外,我们合成了一组13至22个氨基酸残基的肽段,这些肽段跨越TCR(HWBP - 3)α链和β链的互补决定区(CDR)1、2和3以及框架区(FR)。然后,将TCR肽和蛋白用于从供体HW中选择一组TCR特异性CD4 + T细胞系。几个T细胞系与重组V链和合成肽发生交叉反应。在TCR(HWBP - 3)α链的FR1和CDR3区域以及TCR(HWBP - 3)β链的FR1、CDR1和CDR2区域中鉴定出了交叉反应性免疫原性TCR表位。TCR蛋白和肽在至少三种不同的HLA - DR分子[DR2a (DRB50101)、DR2b (DRB11501)和DRB11401/DRB30202]的背景下被识别。值得注意的是,大多数经TCR肽选择的T细胞系不与全长重组V链反应,这表明它们识别“隐蔽”决定簇。基于抗TCR免疫反应的多样性,我们建议在将候选TCR肽临床应用于TCR疫苗治疗之前,应在功能实验中进行体外筛选。