Deng Y, Gibbs J, Bacík I, Porgador A, Copeman J, Lehner P, Ortmann B, Cresswell P, Bennink J R, Yewdell J W
Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
J Immunol. 1998 Aug 15;161(4):1677-85.
To study the requirements for assembly of MHC class I molecules with antigenic peptides in the endoplasmic reticulum (ER), we studied Ag processing in insect cells. Insects lack a class I recognition system, and their cells therefore provide a "blank slate" for identifying the proteins that have evolved to facilitate assembly of class I molecules in vertebrate cells. H-2Kb heavy chain, mouse beta 2-microglobulin, and an ER-targeted version of a peptide corresponding to Ova(257-264) were expressed in insect cells using recombinant vaccinia viruses. Cell surface expression of Kb-OVA(257-264) complexes was quantitated using a recently described complex-specific mAb (25-D1.16). Relative to TAP-deficient human cells, insect cells expressed comparable levels of native, peptide-receptive cell surface Kb molecules, but generated cell surface Kb-OVA(257-264) complexes at least 20-fold less efficiently from ER-targeted peptides. The inefficient assembly of Kb-OVA(257-264) complexes in the ER of insect cells cannot be attributed solely to a requirement for human tapasin, since first, human cells lacking tapasin expressed endogenously synthesized Kb-OVA(257-264) complexes at levels comparable to tapasin-expressing cells, and second, vaccinia virus-mediated expression of human tapasin in insect cells did not detectably enhance the expression of Kb-OVA(257-264) complexes. The assembly of Kb-OVA(257-264) complexes could be greatly enhanced in insect but not human cells by a nonproteasomal protease inhibitor. These findings indicate that insect cells lack one or more factors required for the efficient assembly of class I-peptide complexes in vertebrate cells and are consistent with the idea that the missing component acts to protect antigenic peptides or their immediate precursors from degradation.
为了研究在内质网(ER)中主要组织相容性复合体I类分子与抗原肽组装的要求,我们研究了昆虫细胞中的抗原加工过程。昆虫缺乏I类识别系统,因此它们的细胞为鉴定那些进化而来以促进脊椎动物细胞中I类分子组装的蛋白质提供了一块“白板”。利用重组痘苗病毒在昆虫细胞中表达H-2Kb重链、小鼠β2-微球蛋白以及对应于卵清蛋白(Ova)(257-264)的内质网靶向肽。使用最近描述的复合体特异性单克隆抗体(25-D1.16)对Kb-OVA(257-264)复合体的细胞表面表达进行定量。相对于TAP缺陷的人类细胞,昆虫细胞表达相当水平的天然、肽接受性细胞表面Kb分子,但从内质网靶向肽产生细胞表面Kb-OVA(257-264)复合体的效率至少低20倍。昆虫细胞内质网中Kb-OVA(257-264)复合体组装效率低下不能仅仅归因于对人塔帕辛的需求,因为首先,缺乏塔帕辛的人类细胞表达内源性合成的Kb-OVA(257-264)复合体的水平与表达塔帕辛的细胞相当,其次,痘苗病毒介导的人塔帕辛在昆虫细胞中的表达并未显著增强Kb-OVA(257-264)复合体的表达。一种非蛋白酶体蛋白酶抑制剂可在昆虫而非人类细胞中大大增强Kb-OVA(257-264)复合体的组装。这些发现表明昆虫细胞缺乏脊椎动物细胞中I类-肽复合体高效组装所需的一种或多种因子,并且与缺失成分起到保护抗原肽或其直接前体不被降解这一观点一致。