Aley K O, McCarter G, Levine J D
Departments of Anatomy, Medicine, and Oral Surgery, Division of Neuroscience, University of California at San Francisco, San Francisco, California 94143-0452, USA.
J Neurosci. 1998 Sep 1;18(17):7008-14. doi: 10.1523/JNEUROSCI.18-17-07008.1998.
We investigated the role of nitric oxide (NO) in inflammatory hyperalgesia. Coinjection of prostaglandin E2 (PGE2) with the nitric oxide synthase (NOS) inhibitor NG-methyl-L-arginine (L-NMA) inhibited PGE2-induced hyperalgesia. L-NMA was also able to reverse that hyperalgesia. This suggests that NO contributes to the maintenance of, as well as to the induction of, PGE2-induced hyperalgesia. Consistent with the hypothesis that the NO that contributes to PGE2-induced sensitization of primary afferents is generated in the dorsal root ganglion (DRG) neurons themselves, L-NMA also inhibited the PGE2-induced increase in tetrodotoxin-resistant sodium current in patch-clamp electrophysiological studies of small diameter DRG neurons in vitro. Although NO, the product of NOS, often activates guanylyl cyclase, we found that PGE2-induced hyperalgesia was not inhibited by coinjection of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a guanylyl cyclase inhibitor. We then tested whether the effect of NO depended on interaction with the adenylyl cyclase-protein kinase A (PKA) pathway, which is known to mediate PGE2-induced hyperalgesia. L-NMA inhibited hyperalgesia produced by 8-bromo-cAMP (a stable membrane permeable analog of cAMP) or by forskolin (an adenylyl cyclase activator). However, L-NMA did not inhibit hyperalgesia produced by injection of the catalytic subunit of PKA. Therefore, the contribution of NO to PGE2-induced hyperalgesia may occur in the cAMP second messenger pathway at a point before the action of PKA. We next performed experiments to test whether administration of exogenous NO precursor or donor could mimic the hyperalgesic effect of endogenous NO. Intradermal injection of either the NOS substrate L-arginine or the NO donor 3-(4-morphinolinyl)-sydnonimine hydrochloride (SIN-1) produced hyperalgesia. However, this hyperalgesia differed from PGE2-induced hyperalgesia, because it was independent of the cAMP second messenger system and blocked by the guanylyl cyclase inhibitor ODQ. Therefore, although exogenous NO induces hyperalgesia, it acts by a mechanism different from that by which endogenous NO facilitates PGE2-induced hyperalgesia. Consistent with the hypothesis that these mechanisms are distinct, we found that inhibition of PGE2-induced hyperalgesia caused by L-NMA could be reversed by a low dose of the NO donor SIN-1. The following facts suggest that this dose of SIN-1 mimics a permissive effect of basal levels of NO with regard to PGE2-induced hyperalgesia: (1) this dose of SIN-1 does not produce hyperalgesia when administered alone, and (2) the effect was not blocked by ODQ. In conclusion, we have shown that low levels of NO facilitate cAMP-dependent PGE2-induced hyperalgesia, whereas higher levels of NO produce a cGMP-dependent hyperalgesia.
我们研究了一氧化氮(NO)在炎性痛觉过敏中的作用。将前列腺素E2(PGE2)与一氧化氮合酶(NOS)抑制剂NG-甲基-L-精氨酸(L-NMA)共同注射可抑制PGE2诱导的痛觉过敏。L-NMA也能够逆转这种痛觉过敏。这表明NO有助于PGE2诱导的痛觉过敏的维持以及诱导。与下述假设一致,即对PGE2诱导的初级传入神经致敏有作用的NO是在背根神经节(DRG)神经元自身中产生的,在体外对小直径DRG神经元进行的膜片钳电生理研究中,L-NMA也抑制了PGE2诱导的河豚毒素抗性钠电流的增加。尽管NOS的产物NO通常会激活鸟苷酸环化酶,但我们发现,共同注射鸟苷酸环化酶抑制剂1H-[1,2,4]恶二唑并[4,3-a]喹喔啉-1-酮(ODQ)并不能抑制PGE2诱导的痛觉过敏。然后我们测试了NO的作用是否依赖于与腺苷酸环化酶-蛋白激酶A(PKA)途径的相互作用,已知该途径介导PGE2诱导的痛觉过敏。L-NMA抑制了由8-溴-cAMP(一种稳定的可透过膜的cAMP类似物)或福斯可林(一种腺苷酸环化酶激活剂)产生的痛觉过敏。然而,L-NMA并未抑制注射PKA催化亚基所产生的痛觉过敏。因此,NO对PGE2诱导的痛觉过敏的作用可能发生在cAMP第二信使途径中PKA作用之前的某个点。接下来我们进行实验以测试给予外源性NO前体或供体是否能模拟内源性NO的痛觉过敏作用。皮内注射NOS底物L-精氨酸或NO供体盐酸3-(4-吗啉基)-西多胺(SIN-1)均可产生痛觉过敏。然而,这种痛觉过敏与PGE2诱导的痛觉过敏不同,因为它不依赖于cAMP第二信使系统,并被鸟苷酸环化酶抑制剂ODQ所阻断。因此,尽管外源性NO可诱导痛觉过敏,但其作用机制与内源性NO促进PGE2诱导的痛觉过敏的机制不同。与这些机制不同的假设一致,我们发现低剂量的NO供体SIN-1可逆转L-NMA对PGE2诱导的痛觉过敏的抑制作用。以下事实表明,该剂量的SIN-1模拟了基础水平的NO对PGE2诱导的痛觉过敏的允许作用:(1)该剂量的SIN-1单独给药时不会产生痛觉过敏,且(2)该作用未被ODQ阻断。总之,我们已经表明,低水平的NO促进依赖于cAMP的PGE2诱导的痛觉过敏,而高水平的NO则产生依赖于cGMP的痛觉过敏。