Suppr超能文献

Enhanced gene transfer into HuH-7 cells and primary rat hepatocytes using targeted liposomes and polyethylenimine.

作者信息

Bandyopadhyay P, Kren B T, Ma X, Steer C J

机构信息

University of Minnesota Medical School, Minneapolis, USA.

出版信息

Biotechniques. 1998 Aug;25(2):282-4, 286-92. doi: 10.2144/98252gt03.

Abstract

Different ratios of DNA phosphate to polyethylenimine amine were used for encapsulation and delivery to liver cells of chloramphenicol acetyl transferase (CAT) or luciferase expression plasmids in cationic, neutral and anionic liposomes. Positive liposomes consisted of dioleoyl phosphatidylcholine (DOPC): dioleoyl trimethylammonium propane (DOTAP) (6:1 molar ratio); neutral liposomes were composed of DOPC and dioleoyl phosphatidylethanolamine (DOPE) (1:1); and negative liposomes contained dioleoyl phosphatidylserine (DOPS) and DOPC (1:1). All formulations included 8 mol% galatocerebroside for targeting to the hepatocyte asialoglycoprotein receptor. Liposomes were prepared by film hydration followed by sequential extrusion through 0.8-0.2 mumol polycarbonate membranes. Transfection efficiency of HuH-7 human hepatoma cells and isolated rat hepatocytes was determined by CAT enzyme-linked immunosorbent assay (ELISA) or luciferase activity. Uptake of liposomal-encapsulated, fluorescently labeled 68-mer oligonucleotides was assessed by confocal microscopy. All three formulations demonstrated a twofold or greater increase in transfection efficiency and significantly lower toxicity compared to nonencapsulated polyethylenimine complexes. Negative liposomes were most effective, particularly in the rat hepatocytes. Only the cationic and anionic liposomal formulations exhibited significant thermodynamic stability. These formulations are readily characterized for size, phospholipid and DNA content, and they represent feasible systems for optimizing in vivo delivery systems to hepatocytes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验