Deng H W, Fu Y X
Osteoporosis Research Center, Creighton University, Omaha, NE 68131, USA.
Genet Res. 1998 Jun;71(3):223-36. doi: 10.1017/s0016672398003255.
Due to the tremendous cost of the traditional mutation-accumulation approach (the Bateman-Mukai technique), data are rare for deleterious mutation parameters such as genomic mutation rate, selection and dominance coefficients. Two alternative approaches have been developed (the Morton-Charlesworth and Deng-Lynch techniques). Except for the Deng-Lynch method, the statistical properties (bias and sampling variance) of these techniques are poorly understood; therefore we investigated them using computer simulation. With constant fitness effects of mutations, the Bateman-Mukai (assuming additive effects) and Deng-Lynch (assuming multiplicative effects) techniques are unbiased; the Morton-Charlesworth technique (assuming multiplicative effects) is very biased if fitness is used in the regression to estimate h, but slightly biased if the logarithm of fitness is used. With variable fitness effects, all techniques are biased. The Deng-Lynch technique is statistically better than the others except when fitness is used to estimate the average degree of dominance in selfing populations with the Morton-Charlesworth technique. If fitness effects are multiplicative but additivity is assumed, the Bateman-Mukai technique is biased under constant fitness effects, and less biased under variable fitness effects relative to when fitness effects are additive (as assumed by the technique). Our study not only quantifies the degree of bias under the biologically plausible situations investigated, thus forming a basis for correct inference of the true parameters by using these techniques, but also provides insights into the relative efficiencies of these techniques when the same number of genotypes are handled experimentally.
由于传统的突变积累方法(贝特曼-向井技术)成本巨大,关于有害突变参数(如基因组突变率、选择系数和显性系数)的数据很少。已经开发了两种替代方法(莫顿-查尔斯沃思技术和邓-林奇技术)。除了邓-林奇方法外,这些技术的统计特性(偏差和抽样方差)了解甚少;因此,我们使用计算机模拟对它们进行了研究。在突变的适合度效应恒定的情况下,贝特曼-向井技术(假设加性效应)和邓-林奇技术(假设乘性效应)是无偏的;如果在回归中使用适合度来估计h,莫顿-查尔斯沃思技术(假设乘性效应)有很大偏差,但如果使用适合度的对数则偏差较小。在适合度效应可变的情况下,所有技术都有偏差。除了使用适合度通过莫顿-查尔斯沃思技术估计自交群体中显性平均程度的情况外,邓-林奇技术在统计上比其他技术更好。如果适合度效应是乘性的但假设为加性,相对于适合度效应为加性(如该技术所假设)的情况,贝特曼-向井技术在适合度效应恒定的情况下有偏差,在适合度效应可变的情况下偏差较小。我们的研究不仅量化了在所研究的生物学合理情况下的偏差程度,从而为使用这些技术正确推断真实参数奠定了基础,而且还提供了在实验处理相同数量基因型时这些技术相对效率的见解。