Gelfi C, Curcio M, Righetti P G, Sebastiano R, Citterio A, Ahmadzadeh H, Dovichi N J
ITBA, CNR, Milano, Italy.
Electrophoresis. 1998 Jul;19(10):1677-82. doi: 10.1002/elps.1150191026.
Two approaches were used to prepare a series of surface-modified capillaries. In the first, a sublayer was formed by coupling gamma-methacryloxypropyltrimethoxysilane to the surface silanol groups forming an SI-O bond; a top layer was then formed by polymerizing acrylamide in the capillary, which reacted with the sublayer. In the second approach, a sublayer was formed by silanol chlorination, followed by Grignard coupling of vinylmagnesium bromide to form an Si-C bond at the surface; a top layer was formed by polymerizing either acrylamide (AA), dimethylacrylamide (DMA), N-acryloylaminoethoxyethanol (AAEE), or N-acryloylaminopropanol (AAP) onto the sublayer. The Si-Cpoly(AA) capillaries were more stable and produced an approximately 10-fold lower electroosmotic flow compared to the Si-O-poly(AA) capillaries. The Si-C sublayer was used to compare the performance of all four top layers. Electroosmotic flow decreased in the order: Si-O-poly(AA), Si-C-poly(AA), Si-Cpoly(AAEE), Si-C-poly(DMA), and Si-C-poly(AAP). Si-C-poly(AA) showed evidence of irreversible degradation at pH 9 already after 40-50 runs. Si-C-polyAAP-coated capillaries demonstrated superior efficiency and migration time reproducibility for a number of alkaline proteins and for fluorescently labeled ovalbumin. Excellent performance was maintained, in the case of poly(AAP), for a least 300 runs (of 30 min duration) at pH 9.0.
采用两种方法制备了一系列表面改性毛细管。第一种方法是,通过将γ-甲基丙烯酰氧基丙基三甲氧基硅烷与表面硅醇基团偶联形成Si-O键来形成亚层;然后在毛细管中使丙烯酰胺聚合形成顶层,该顶层与亚层发生反应。在第二种方法中,通过硅醇氯化形成亚层,随后进行乙烯基溴化镁的格氏偶联,在表面形成Si-C键;通过将丙烯酰胺(AA)、二甲基丙烯酰胺(DMA)、N-丙烯酰基氨基乙氧基乙醇(AAEE)或N-丙烯酰基氨基丙醇(AAP)聚合到亚层上形成顶层。与Si-O-聚(AA)毛细管相比,Si-C-聚(AA)毛细管更稳定,产生的电渗流降低了约10倍。Si-C亚层用于比较所有四种顶层的性能。电渗流按以下顺序降低:Si-O-聚(AA)、Si-C-聚(AA)、Si-C-聚(AAEE)、Si-C-聚(DMA)和Si-C-聚(AAP)。Si-C-聚(AA)在pH 9条件下运行40-50次后就已出现不可逆降解的迹象。Si-C-聚(AAP)涂层毛细管对多种碱性蛋白质和荧光标记的卵清蛋白显示出卓越的分离效率和迁移时间重现性。对于聚(AAP),在pH 9.0条件下至少进行300次(每次30分钟)运行时仍能保持优异性能。