Malloy B J, Price D T, Price R R, Bienstock A M, Dole M K, Funk B L, Rudner X L, Richardson C D, Donatucci C F, Schwinn D A
Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.
J Urol. 1998 Sep;160(3 Pt 1):937-43. doi: 10.1016/S0022-5347(01)62836-2.
To identify and quantitate alpha1-adrenergic receptor (alpha1AR) subtype expression in human detrusor.
Initial studies to determine alpha1AR expression in human detrusor were performed using saturation binding with [125I]HEAT. Once the presence of alpha1ARs was documented, subtype (alpha1a, alpha1b, alpha1d) expression at the mRNA level (and comparison with rat) was determined with RNase protection assays (human detrusor) and RT-PCR (human detrusor, rat whole bladder). Competition binding analysis with the alpha1dAR-selective ligand BMY7378 was used to measure alpha1AR subtype expression at a protein level in human detrusor.
Alpha1AR expression in human detrusor was low but reproducible (6.3 +/- 1.0 fmol./mg. total protein). RNase protection assays performed on total RNA extracted from human detrusor revealed the following alpha1AR subtype expression: alpha1d (66%) > alpha1a (34%), and no alpha1b. RT-PCR confirmed alpha1AR subtype mRNA distribution in human detrusor with alpha1d (approximately 60-70%) > alpha1a (approximately 30-40%), and a lack of alpha1b mRNA. Rat whole bladder expressed different alpha1AR subtype mRNA than human detrusor, with alpha1a approximately alpha1b approximately alpha1d. The presence of alpha1d > alpha1a expression in human detrusor was confirmed at a protein level by competition analysis utilizing BMY7378 which revealed a two-site fit, with Ki and high affinity binding (66%) consistent with the alpha1dAR subtype.
Human detrusor contained two alpha1AR subtypes (alpha1d > alpha1a), a finding that is different from rat, another commonly used animal model. Since non-subtype selective alpha1AR antagonists ameliorate irritative bladder symptoms (in men and women with/without outlet obstruction), and Rec 15/2739 (alpha1a selective antagonist) does not improve symptom scores in BPH, our findings suggest bladder alpha1dARs may provide a potentially novel mechanism underlying these therapeutic benefits.