Suppr超能文献

法尼醇通过间接抑制酿酒酵母线粒体电子传递链诱导活性氧的产生。

Farnesol-induced generation of reactive oxygen species via indirect inhibition of the mitochondrial electron transport chain in the yeast Saccharomyces cerevisiae.

作者信息

Machida K, Tanaka T, Fujita K, Taniguchi M

机构信息

Department of Biology, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

出版信息

J Bacteriol. 1998 Sep;180(17):4460-5. doi: 10.1128/JB.180.17.4460-4465.1998.

Abstract

The mechanism of farnesol (FOH)-induced growth inhibition of Saccharomyces cerevisiae was studied in terms of its promotive effect on generation of reactive oxygen species (ROS). The level of ROS generation in FOH-treated cells increased five- to eightfold upon the initial 30-min incubation, while cells treated with other isoprenoid compounds, like geraniol, geranylgeraniol, and squalene, showed no ROS-generating response. The dependence of FOH-induced growth inhibition on such an oxidative stress was confirmed by the protection against such growth inhibition in the presence of an antioxidant such as alpha-tocopherol, probucol, or N-acetylcysteine. FOH could accelerate ROS generation only in cells of the wild-type grande strain, not in those of the respiration-deficient petite mutant ([rho0]), which illustrates the role of the mitochondrial electron transport chain as its origin. Among the respiratory chain inhibitors, ROS generation could be effectively eliminated with myxothiazol, which inhibits oxidation of ubiquinol to the ubisemiquinone radical by the Rieske iron-sulfur center of complex III, but not with antimycin A, an inhibitor of electron transport that is functional in further oxidation of the ubisemiquinone radical to ubiquinone in the Q cycle of complex III. Cellular oxygen consumption was inhibited immediately upon extracellular addition of FOH, whereas FOH and its possible metabolites failed to directly inhibit any oxidase activities detected with the isolated mitochondrial preparation. A protein kinase C (PKC)-dependent mechanism was suggested to exist in the inhibition of mitochondrial electron transport since FOH-induced ROS generation could be effectively eliminated with a membrane-permeable diacylglycerol analog which can activate PKC. The present study supports the idea that FOH inhibits the ability of the electron transport chain to accelerate ROS production via interference with a phosphatidylinositol type of signal.

摘要

就法尼醇(FOH)对活性氧(ROS)生成的促进作用,研究了其诱导酿酒酵母生长抑制的机制。在最初30分钟的孵育过程中,经FOH处理的细胞中ROS生成水平增加了五至八倍,而用其他类异戊二烯化合物(如香叶醇、香叶基香叶醇和角鲨烯)处理的细胞则未表现出ROS生成反应。在存在抗氧化剂(如α-生育酚、普罗布考或N-乙酰半胱氨酸)的情况下,对这种生长抑制的保护作用证实了FOH诱导的生长抑制对这种氧化应激的依赖性。FOH只能在野生型大菌株的细胞中加速ROS生成,而不能在呼吸缺陷型小突变体([rho0])的细胞中加速ROS生成,这说明了线粒体电子传递链作为其来源的作用。在呼吸链抑制剂中,用米酵菌素可有效消除ROS生成,米酵菌素可抑制辅酶QH2被复合物III的Rieske铁硫中心氧化为半醌自由基,但用抗霉素A则不能,抗霉素A是一种电子传递抑制剂,在复合物III的Q循环中,其作用是将半醌自由基进一步氧化为辅酶Q。在细胞外添加FOH后,细胞的氧气消耗立即受到抑制,而FOH及其可能的代谢产物未能直接抑制用分离的线粒体制剂检测到的任何氧化酶活性。由于FOH诱导的ROS生成可用可激活蛋白激酶C(PKC)的膜通透性二酰甘油类似物有效消除,因此提示存在一种PKC依赖性机制来抑制线粒体电子传递。本研究支持这样一种观点,即FOH通过干扰磷脂酰肌醇类型的信号来抑制电子传递链加速ROS生成的能力。

相似文献

3
Farnesol-induced growth inhibition in Saccharomyces cerevisiae by a cell cycle mechanism.
Microbiology (Reading). 1999 Feb;145 ( Pt 2):293-299. doi: 10.1099/13500872-145-2-293.
10
Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria.
Biochim Biophys Acta. 2007 Jul;1767(7):989-97. doi: 10.1016/j.bbabio.2007.05.002. Epub 2007 May 13.

引用本文的文献

1
Mechanisms and Strategies for Engineering Oxidative Stress Resistance in .
Chem Bio Eng. 2025 May 29;2(7):409-422. doi: 10.1021/cbe.5c00021. eCollection 2025 Jul 24.
2
The Mechanism of Ammonia-Assimilating Bacteria Promoting the Growth of Oyster Mushrooms ().
J Fungi (Basel). 2025 Feb 9;11(2):130. doi: 10.3390/jof11020130.
3
Editorial: Mitochondrial function and dysfunction in pathogenic fungi.
Front Physiol. 2024 Oct 29;15:1506684. doi: 10.3389/fphys.2024.1506684. eCollection 2024.
4
The quorum-sensing molecule farnesol alters sphingolipid metabolism in human monocyte-derived dendritic cells.
mBio. 2024 Aug 14;15(8):e0073224. doi: 10.1128/mbio.00732-24. Epub 2024 Jul 2.
5
Absence of farnesol salvage in and probably in other fungi.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0087424. doi: 10.1128/aem.00874-24. Epub 2024 Jun 28.
6
Physiological adventures in : farnesol and ubiquinones.
Microbiol Mol Biol Rev. 2024 Mar 27;88(1):e0008122. doi: 10.1128/mmbr.00081-22. Epub 2024 Mar 4.
7
Transdermal administration of farnesol-ethosomes enhances the treatment of cutaneous candidiasis induced by in mice.
Microbiol Spectr. 2024 Apr 2;12(4):e0424723. doi: 10.1128/spectrum.04247-23. Epub 2024 Feb 28.
8
Farnesol as an antifungal agent: comparisons among and haploid and diploid and .
Front Physiol. 2023 Nov 20;14:1207567. doi: 10.3389/fphys.2023.1207567. eCollection 2023.
9
Pseudomonas aeruginosa increases the susceptibility of Candida albicans to amphotericin B in dual-species biofilms.
J Antimicrob Chemother. 2023 Sep 5;78(9):2228-2241. doi: 10.1093/jac/dkad228.
10
Quantitative assay for farnesol and the aromatic fusel alcohols from the fungus Candida albicans.
Appl Microbiol Biotechnol. 2022 Oct;106(19-20):6759-6773. doi: 10.1007/s00253-022-12165-w. Epub 2022 Sep 15.

本文引用的文献

2
Novel salvage pathway utilizing farnesol and geranylgeraniol for protein isoprenylation.
Biochem Biophys Res Commun. 1997 Aug 28;237(3):483-7. doi: 10.1006/bbrc.1997.7145.
3
Aniline and its metabolites generate free radicals in yeast.
Mutagenesis. 1997 Jul;12(4):215-20. doi: 10.1093/mutage/12.4.215.
4
Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae.
FEBS Lett. 1997 Jun 30;410(2-3):219-22. doi: 10.1016/s0014-5793(97)00592-9.
5
Ascorbate and alpha-tocopherol prevent apoptosis induced by serum removal independent of Bcl-2.
Arch Biochem Biophys. 1997 Jul 15;343(2):243-8. doi: 10.1006/abbi.1997.0170.
6
Inhibitors of Ras farnesylation revert the increased resistance to oxidative stress in K-Ras transformed NIH 3T3 cells.
Biochem Biophys Res Commun. 1996 Dec 24;229(3):739-45. doi: 10.1006/bbrc.1996.1874.
8
Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells.
Am J Physiol. 1996 Jul;271(1 Pt 2):F209-15. doi: 10.1152/ajprenal.1996.271.1.F209.
9
Isolation of highly purified mitochondria from Saccharomyces cerevisiae.
Methods Enzymol. 1995;260:213-23. doi: 10.1016/0076-6879(95)60139-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验