Suppr超能文献

Pathological changes induced by PhTx1 from Phoneutria nigriventer spider venom in mouse skeletal muscle in vitro.

作者信息

Mattiello-Sverzut A C, Fontana M D, Diniz C R, da Cruz-Höfling M A

机构信息

Department of Physiology, State University of Campinas (UNICAMP), (SP), Brazil.

出版信息

Toxicon. 1998 Oct;36(10):1349-61. doi: 10.1016/s0041-0101(98)00012-9.

Abstract

The 'armed' spider Phoneutria nigriventer is responsible for most human accidents involving spiders in Brazil. The effects of fraction Tx1 (PhTx1) from the venom of this spider were investigated by physiological and morphological methods using the mouse phrenic nerve-diaphragm preparation. PhTx1 (1 and 5 microg) did not affect the twitch tension of muscle fibers under indirect electrical stimulation. At this same concentration, PhTx1 also did not alter the miniature end-plate potential (mepp) frequency and amplitude, nor did it change the resting membrane potential 60 min after addition to the preparation. Light microscopy (LM) revealed that in muscles incubated with PhTx1 a number of fibers were morphologically altered, as evidenced by microvacuolization and myofibril hypercontraction and loss within 15 min after toxin administration. Transmission electron microscopy (TEM) showed sarcoplasmic reticulum swelling, disorganization of the sarcomeres and mitochondrial damage, and occasionally, sarcolemmal discontinuities with a persisting basal membrane. The intra-muscular fascicles of the phrenic nerve showed myelinated axons with vacuolated myelin sheaths as well as peri- and intra-axoplasmic vacuoles. The neuromuscular junction changes were variable, but were rarely severe. Thus, although PhTx1 did not depolarize or hyperpolarize the neuromuscular junction, it was nevertheless toxic to a restricted number of muscle fibers and nerve structures. The site of action of PhTx1 may involve the sarcolemma and axolemma as suggested by the morphological abnormalities which could reflect hydroelectrolytic disturbances.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验