Suppr超能文献

The mosquito dihydrofolate reductase amplicon contains a truncated synaptic vesicle protein gene.

作者信息

Wang Z H, Fallon A M

机构信息

Department of Entomology, University of Minnesota, St Paul 55108, USA.

出版信息

Insect Mol Biol. 1998 Nov;7(4):317-25. doi: 10.1046/j.1365-2583.1998.740317.x.

Abstract

When maintained under continuous selection with the folate inhibitor, methotrexate, cultured Aedes albopicfus mosquito cells amplify an 200 kb region of DNA containing the dihydrofolate reductase gene. To determine whether the amplicon contained additional coding regions, Southern blots of cosmid clones containing amplicon DNA were probed separately with reverse-transcribed mRNA from methotrexate-sensitive and methotrexate-resistant cells. Cosmid pWED118 contained five EcoRI fragments (A, B, C, F, G) ranging in size from 2 to 5 kb that hybridized with cDNA from resistant cells. Of these, fragments B and F also hybridized to probe representing mRNA from sensitive cells, and all but fragment G hybridized to repetitive DNA from wild-type cells. Fragment G, which appeared to encode a low copy number gene in wild-type cells that subsequently became part of the dihydrofolate reductase amplicon in methotrexate-resistant cells, hybridized strongly to a 7 kb band and more weakly to bands measuring 9 and 3 kb on Northern blots containing RNA from resistant cells. Fragment G contained a 1203 bp open reading frame, encoding 401 amino acids homologous to synaptic vesicle protein SV2, a member of a transmembrane transporter family expressed in neural and endocrine cells. The region of homology included the six N-terminal transmembrane domains, an internal cytoplasmic loop, a seventh transmembrane domain, and most of an intravesicular loop. This partial sequence, which appears to correspond to a truncated gene generated during formation of the dihydrofolate reductase amplicon, provides a useful basis for more extensive characterization of an important gene family that may be the target of novel insecticides.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验