Fawzy WM
Faculty of Science, University of United Arab Emirates, El-Ain, The United Arab Emirates
J Mol Spectrosc. 1998 Sep;191(1):68-80. doi: 10.1006/jmsp.1998.7584.
This paper concerns rotational energy levels and line intensities for electronic, vibrational, and microwave transitions in an open-shell complex consisting of an open-shell diatomic molecule and a closed-shell partner. The electronic state of the open-shell diatomic fragment is a 2S+1Sigma state, where S >/= 12, the close-shell partner could be a rare gas atom or a diatomic molecule or a planar polyatomic molecule. We are considering a near-rigid rotor model for a nonlinear complex, taking into account thoroughly all effects of the electron spin and the quartic centrifugal distortion correction terms. The total Hamiltonian is expressed as H=Hrot+Hsr+Hss+Hcd+Hsrcd+Hsscd. We have derived all the nonvanishing matrix elements of the Hamiltonian operators in the molecular basis set. The rotational energy levels are calculated by numerical diagonalization of the total Hamiltonian matrix for each J value. The nonvanishing matrix elements of the electric dipole moment operator are derived in the molecular basis set for electronic, vibrational, and microwave transitions within the complex. Expectation values of the quantum numbers and of the parities of the rotational states are derived in the molecular basis set. Relative intensities of the allowed rotational transitions, expectation values of the quantum numbers and the parities are calculated numerically in the space of the eigenvectors obtained from diagonalization of the Hamiltonian matrix. The formalism and the computer program of this paper are considered as extensions to our previous work [W. M. Fawzy and J. T. Hougen, J. Mol. Spectrosc. 137, 154-165 (1989); W. M. Fawzy, J. Mol. Spectrosc. 160, 84-96 (1993)] and are expected to be particularly useful for analyzing and fitting high-resolution spectra of weakly bonded oxygen complexes. A brief discussion of the Hamiltonian operators, the matrix elements, and the computer program is given. Copyright 1998 Academic Press.
本文涉及一个开壳层配合物中电子、振动和微波跃迁的转动能级及谱线强度,该配合物由一个开壳层双原子分子和一个闭壳层分子组成。开壳层双原子片段的电子态为(2S + 1\Sigma)态,其中(S \geq \frac{1}{2}),闭壳层分子可以是稀有气体原子、双原子分子或平面多原子分子。我们考虑一个非线性配合物的近刚性转子模型,全面考虑了电子自旋和四次离心畸变校正项的所有效应。总哈密顿量表示为(H = H_{rot} + H_{sr} + H_{ss} + H_{cd} + H_{srcd} + H_{sscd})。我们已经在分子基组中推导了哈密顿算符的所有非零矩阵元。通过对每个(J)值的总哈密顿矩阵进行数值对角化来计算转动能级。在分子基组中推导了配合物内部电子、振动和微波跃迁的电偶极矩算符的非零矩阵元。在分子基组中推导了转动态的量子数和宇称的期望值。在通过哈密顿矩阵对角化得到的本征向量空间中,数值计算了允许的转动跃迁的相对强度、量子数和宇称的期望值。本文的形式体系和计算机程序被认为是我们先前工作[W. M. Fawzy和J. T. Hougen,《分子光谱学杂志》137, 154 - 165 (1989); W. M. Fawzy,《分子光谱学杂志》160, 84 - 96 (1993)]的扩展,预计对分析和拟合弱键合氧配合物的高分辨率光谱特别有用。文中对哈密顿算符、矩阵元和计算机程序进行了简要讨论。版权所有1998年学术出版社。