Suppr超能文献

一种基于荧光的新型遗传策略鉴定出酿酒酵母中核孔复合体组装缺陷的突变体。

A novel fluorescence-based genetic strategy identifies mutants of Saccharomyces cerevisiae defective for nuclear pore complex assembly.

作者信息

Bucci M, Wente S R

机构信息

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

出版信息

Mol Biol Cell. 1998 Sep;9(9):2439-61. doi: 10.1091/mbc.9.9.2439.

Abstract

Nuclear pore complexes (NPCs) are large proteinaceous portals for exchanging macromolecules between the nucleus and the cytoplasm. Revealing how this transport apparatus is assembled will be critical for understanding the nuclear transport mechanism. To address this issue and to identify factors that regulate NPC formation and dynamics, a novel fluorescence-based strategy was used. This approach is based on the functional tagging of NPC proteins with the green fluorescent protein (GFP), and the hypothesis that NPC assembly mutants will have distinct GFP-NPC signals as compared with wild-type (wt) cells. By fluorescence-activated cell sorting for cells with low GFP signal from a population of mutagenized cells expressing GFP-Nup49p, three complementation groups were identified: two correspond to mutant nup120 and gle2 alleles that result in clusters of NPCs. Interestingly, a third group was a novel temperature-sensitive allele of nup57. The lowered GFP-Nup49p incorporation in the nup57-E17 cells resulted in a decreased fluorescence level, which was due in part to a sharply diminished interaction between the carboxy-terminal truncated nup57pE17 and wt Nup49p. Interestingly, the nup57-E17 mutant also affected the incorporation of a specific subset of other nucleoporins into the NPC. Decreased levels of NPC-associated Nsp1p and Nup116p were observed. In contrast, the localizations of Nic96p, Nup82p, Nup159p, Nup145p, and Pom152p were not markedly diminished. Coincidentally, nuclear import capacity was inhibited. Taken together, the identification of such mutants with specific perturbations of NPC structure validates this fluorescence-based strategy as a powerful approach for providing insight into the mechanism of NPC biogenesis.

摘要

核孔复合体(NPCs)是细胞核与细胞质之间用于大分子交换的大型蛋白质通道。揭示这种转运装置是如何组装的,对于理解核转运机制至关重要。为了解决这个问题并识别调节NPC形成和动态的因素,我们采用了一种基于荧光的新策略。该方法基于用绿色荧光蛋白(GFP)对NPC蛋白进行功能标记,以及这样一种假设,即与野生型(wt)细胞相比,NPC组装突变体将具有不同的GFP-NPC信号。通过对表达GFP-Nup49p的诱变细胞群体中具有低GFP信号的细胞进行荧光激活细胞分选,鉴定出三个互补组:两个对应于导致NPC聚集的突变nup120和gle2等位基因。有趣的是,第三组是nup57的一个新的温度敏感等位基因。nup57-E17细胞中GFP-Nup49p掺入量降低导致荧光水平下降,这部分是由于羧基末端截短的nup57pE17与wt Nup49p之间的相互作用急剧减少。有趣的是,nup57-E17突变体还影响了其他核孔蛋白的一个特定子集掺入NPC。观察到与NPC相关的Nsp1p和Nup116p水平降低。相比之下,Nic96p、Nup82p、Nup159p、Nup145p和Pom152p的定位没有明显减少。巧合的是,核输入能力受到抑制。总之,鉴定出具有NPC结构特异性扰动的此类突变体,验证了这种基于荧光的策略是一种深入了解NPC生物发生机制的有力方法。

相似文献

2
In vivo dynamics of nuclear pore complexes in yeast.
J Cell Biol. 1997 Mar 24;136(6):1185-99. doi: 10.1083/jcb.136.6.1185.
5
Dynamics of nuclear pore distribution in nucleoporin mutant yeast cells.
J Cell Biol. 1997 Feb 24;136(4):747-59. doi: 10.1083/jcb.136.4.747.
7
The Ran GTPase cycle is required for yeast nuclear pore complex assembly.
J Cell Biol. 2003 Mar 31;160(7):1041-53. doi: 10.1083/jcb.200209116. Epub 2003 Mar 24.
8
Molecular architecture of the yeast nuclear pore complex: localization of Nsp1p subcomplexes.
J Cell Biol. 1998 Nov 2;143(3):577-88. doi: 10.1083/jcb.143.3.577.
9
Functional characterization of a Nup159p-containing nuclear pore subcomplex.
Mol Biol Cell. 1998 Dec;9(12):3475-92. doi: 10.1091/mbc.9.12.3475.
10
A novel nuclear pore protein Nup82p which specifically binds to a fraction of Nsp1p.
J Cell Biol. 1995 Sep;130(6):1263-73. doi: 10.1083/jcb.130.6.1263.

引用本文的文献

1
Nuclear envelope budding and its cellular functions.
Nucleus. 2023 Dec;14(1):2178184. doi: 10.1080/19491034.2023.2178184.
2
Uip4p modulates nuclear pore complex function in .
Nucleus. 2022 Dec;13(1):79-93. doi: 10.1080/19491034.2022.2034286.
3
Nuclear envelope-vacuole contacts mitigate nuclear pore complex assembly stress.
J Cell Biol. 2020 Dec 7;219(12). doi: 10.1083/jcb.202001165.
4
Fantastic nuclear envelope herniations and where to find them.
Biochem Soc Trans. 2018 Aug 20;46(4):877-889. doi: 10.1042/BST20170442. Epub 2018 Jul 19.
5
A novel function for the Caenorhabditis elegans torsin OOC-5 in nucleoporin localization and nuclear import.
Mol Biol Cell. 2015 May 1;26(9):1752-63. doi: 10.1091/mbc.E14-07-1239. Epub 2015 Mar 4.
6
Time-course proteome analysis reveals the dynamic response of Cryptococcus gattii cells to fluconazole.
PLoS One. 2012;7(8):e42835. doi: 10.1371/journal.pone.0042835. Epub 2012 Aug 6.
8
ER membrane-bending proteins are necessary for de novo nuclear pore formation.
J Cell Biol. 2009 Mar 9;184(5):659-75. doi: 10.1083/jcb.200806174.
10
Distinct functions of the Drosophila Nup153 and Nup214 FG domains in nuclear protein transport.
J Cell Biol. 2007 Aug 13;178(4):557-65. doi: 10.1083/jcb.200612135. Epub 2007 Aug 6.

本文引用的文献

3
A role for the divergent actin gene, ACT2, in nuclear pore structure and function.
EMBO J. 1997 Jun 16;16(12):3572-86. doi: 10.1093/emboj/16.12.3572.
4
Nucleocytoplasmic transport of macromolecules.
Microbiol Mol Biol Rev. 1997 Jun;61(2):193-211. doi: 10.1128/mmbr.61.2.193-211.1997.
6
From nucleoporins to nuclear pore complexes.
Curr Opin Cell Biol. 1997 Jun;9(3):401-11. doi: 10.1016/s0955-0674(97)80014-2.
7
Defining the essential functional regions of the nucleoporin Nup145p.
J Cell Sci. 1997 Apr;110 ( Pt 7):911-25. doi: 10.1242/jcs.110.7.911.
8
In vivo dynamics of nuclear pore complexes in yeast.
J Cell Biol. 1997 Mar 24;136(6):1185-99. doi: 10.1083/jcb.136.6.1185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验