Suppr超能文献

Excretory transport of xenobiotics by dogfish shark rectal gland tubules.

作者信息

Miller D S, Masereeuw R, Henson J, Karnaky K J

机构信息

Intracellular Regulation Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.

出版信息

Am J Physiol. 1998 Sep;275(3):R697-705. doi: 10.1152/ajpregu.1998.275.3.R697.

Abstract

Marine elasmobranch rectal gland is a specialized, osmoregulatory organ composed of numerous blind-ended, branched tubules emptying into a central duct. To date, NaCl excretion has been its only described function. Here we use isolated rectal gland tubule fragments from dogfish shark (Squalus acanthias), fluorescent xenobiotics, and confocal microscopy to describe a second function, xenobiotic excretion. Isolated rectal gland tubules rapidly transported the fluorescent organic anion sulforhodamine 101 from bath to lumen. Luminal accumulation was concentrative, saturable, and inhibited by cyclosporin A (CSA), chlorodinitrobenzene, leukotriene C4, and KCN. Inhibitors of renal organic anion transport (probenecid, p-aminohippurate), organic cation transport (tetraethylammonium and verapamil), and P-glycoprotein (verapamil) were without effect. Cellular accumulation of sulforhodamine 101 was not concentrative, saturable, or inhibitable. Rectal gland tubules did not secrete fluorescein, daunomycin, or a fluorescent CSA derivative. Finally, frozen rectal gland sections stained with an antibody to a hepatic canalicular multispecific organic anion transporter (cMOAT or MRP2) showed heavy and specific staining on the luminal membrane of the epithelial cells. We conclude that rectal gland is capable of active and specific excretion of xenobiotics and that such transport is mediated by a shark analog of MRP2, an ATP-driven xenobiotic transporter, but not by P-glycoprotein.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验