Rascher C, Pahl A, Pecht A, Brune K, Solbach W, Bang H
Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, D-91054 Erlangen, Germany.
Biochem J. 1998 Sep 15;334 ( Pt 3)(Pt 3):659-67. doi: 10.1042/bj3340659.
The immunosuppressive effects of the fungal metabolite cyclosporin A (CsA) are mediated primarily by binding to cyclophilins (Cyps). The resulting CsA-Cyp complex inhibits the Ca2+-regulated protein phosphatase calcineurin and down-regulates signal transduction events. Previously we reported that CsA is a potent inhibitor of infections transmitted by the human pathogenic protozoan parasite Leishmania major in vitro and in vivo, but does not effect the extracellular growth of L. major itself. It is unknown how L. major exerts this resistance to CsA. Here we report that a major Cyp, besides additional isoforms with the same N-terminal amino acid sequence, was expressed in L. major. The cloned and sequenced gene encodes a putative 174-residue protein called L. major Cyp 19 (LmCyp19). The recombinant LmCyp19 exhibits peptidyl-prolyl cis/trans isomerase activity with a substrate specificity and an inhibition by CsA that are characteristic of other eukaryotic Cyps. To determine whether calcineurin is involved in the discrimination of the effects of CsA we also examined the presence of a parasitic calcineurin and tested the interaction with Cyps. Despite the expression of functionally active calcineurin by L. major, neither LmCyp19 nor other L. major Cyps bound to its own or mammalian calcineurin. The amino acid sequence of most Cyps includes an essential arginine residue around the calcineurin-docking side. In LmCyp19 this is replaced by an asparagine residue. This exchange and additional charged residues are apparently responsible for the lack of LmCyp19 interaction with calcineurin. These observations indicate that resistance of L. major to CsA in vitro is mediated by the lack of complex formation with calcineurin despite CsA binding by parasitic Cyp.
真菌代谢产物环孢素A(CsA)的免疫抑制作用主要通过与亲环蛋白(Cyps)结合来介导。由此形成的CsA-Cyp复合物会抑制Ca2+调节的蛋白磷酸酶钙调神经磷酸酶,并下调信号转导事件。此前我们报道,CsA在体外和体内都是人类致病原生动物寄生虫硕大利什曼原虫传播感染的有效抑制剂,但对硕大利什曼原虫本身的细胞外生长没有影响。目前尚不清楚硕大利什曼原虫如何对CsA产生这种抗性。在此我们报告,除了具有相同N端氨基酸序列的其他亚型外,一种主要的Cyp在硕大利什曼原虫中表达。克隆并测序的基因编码一种推定的174个残基的蛋白质,称为硕大利什曼原虫Cyp 19(LmCyp19)。重组LmCyp19表现出肽基脯氨酰顺/反异构酶活性,其底物特异性和对CsA的抑制作用具有其他真核生物Cyps的特征。为了确定钙调神经磷酸酶是否参与了对CsA作用的区分,我们还检测了寄生钙调神经磷酸酶的存在,并测试了其与Cyps的相互作用。尽管硕大利什曼原虫表达了具有功能活性的钙调神经磷酸酶,但LmCyp19和其他硕大利什曼原虫Cyps都不与其自身或哺乳动物的钙调神经磷酸酶结合。大多数Cyps的氨基酸序列在钙调神经磷酸酶结合位点周围包含一个必需的精氨酸残基。在LmCyp19中,该残基被天冬酰胺残基取代。这种交换和其他带电荷的残基显然是LmCyp19与钙调神经磷酸酶缺乏相互作用的原因。这些观察结果表明,尽管寄生Cyp能结合CsA,但硕大利什曼原虫在体外对CsA的抗性是由其与钙调神经磷酸酶缺乏复合物形成介导的。