Xu Y, Cheah E, Carr P D, van Heeswijk W C, Westerhoff H V, Vasudevan S G, Ollis D L
Research School of Chemistry, Australian National University, GPO 414, Canberra, ACT, 2601, Australia.
J Mol Biol. 1998 Sep 11;282(1):149-65. doi: 10.1006/jmbi.1998.1979.
GlnK is a recently discovered homologue of the PII signal protein, an indicator of the nitrogen status of bacteria. PII occupies a central position in the dual cascade that regulates the activity of glutamine synthetase and the transcription of its gene. The complete role of Escherichia coli GlnK is yet to be determined, but already it is known that GlnK behaves like PII and can substitute for PII under some circumstances thereby adding to the subtleties of nitrogen regulation. There are also indications that the roles of the two proteins differ; the expression of PII is constitutive while that of GlnK is linked to the level of nitrogen in the cell. The discovery of GlnK begs the question of why E. coli has both GlnK and PII. Clearly, the structural similarities and differences of GlnK and PII will lead to a better understanding of how PII-like proteins function in E. coli and other organisms. We have crystallised and solved the X-ray structure of GlnK at 2.0 A resolution. The asymmetric unit has two independent copies of the GlnK subunit and both pack around 3-fold axes to form trimers. The trimers have a barrel-like core with recognition loops (the T-loops) that protrude from the top of the molecule. The two GlnK molecules have similar core structures to PII but differ significantly at the C terminus and the loops. The T-loops of the two GlnK molecules also differ from each other; one is disordered while the conformation of the other is stabilised by lattice contacts. The conformation of the ordered T-loop of GlnK differs from that observed in the PII structure despite the fact that their sequences are very similar. The structures suggest that the T-loops do not have a rigid structure and that they may be flexible in solution. The presence of a turn of 310 helix in the middle of the T-loop suggests that secondary structure could form when it interacts with soluble receptor enzymes.Co-crystals of GlnK and ATP were used to determine the structure of the complex. In these crystals, GlnK occupies a position of 3-fold symmetry. ATP binds in a cleft on the side of the molecule. The cleft is suitably positioned for ATP to influence the flexible T-loops. It is found at the junction of two beta sheets and is formed by two peptides one of which contains a variant of the "Gly-loop" found in other mononucleotide binding proteins. This sequence, Thr-Gly-X-X-Gly-Asp-Gly-Lys-Ile-Phe, forms part of the B-loop and is conserved in a wide variety of organisms that include bacteria, algae and archeabacteria. This sequence is more highly conserved than the functional T-loop, suggesting that ATP has an important role in PII-like proteins.
GlnK是最近发现的PII信号蛋白的同源物,PII信号蛋白是细菌氮状态的一个指标。PII在调节谷氨酰胺合成酶活性及其基因转录的双级联反应中占据中心位置。大肠杆菌GlnK的完整作用尚未确定,但已知GlnK的行为与PII相似,并且在某些情况下可以替代PII,从而增加了氮调节的微妙性。也有迹象表明这两种蛋白质的作用不同;PII的表达是组成型的,而GlnK的表达与细胞内的氮水平有关。GlnK的发现引出了一个问题,即为什么大肠杆菌同时拥有GlnK和PII。显然,GlnK和PII的结构异同将有助于更好地理解类PII蛋白在大肠杆菌和其他生物体中的功能。我们已经以2.0埃的分辨率结晶并解析了GlnK的X射线结构。不对称单元有两个独立的GlnK亚基拷贝,它们都围绕三重轴堆积形成三聚体。三聚体有一个桶状核心,带有从分子顶部突出的识别环(T环)。两个GlnK分子的核心结构与PII相似,但在C末端和环处有显著差异。两个GlnK分子的T环也彼此不同;一个是无序的,而另一个的构象通过晶格接触得以稳定。尽管GlnK有序T环的序列与PII结构中观察到的序列非常相似,但其构象却有所不同。这些结构表明,T环没有刚性结构,它们在溶液中可能是灵活的。T环中间存在一个310螺旋的转角,这表明当它与可溶性受体酶相互作用时可能会形成二级结构。利用GlnK与ATP的共晶体来确定复合物的结构。在这些晶体中,GlnK占据三重对称位置。ATP结合在分子一侧的裂缝中。该裂缝的位置适合ATP影响灵活的T环。它位于两个β折叠片的交界处,由两个肽段形成,其中一个肽段包含在其他单核苷酸结合蛋白中发现的“甘氨酸环”变体。这个序列,苏氨酸 - 甘氨酸 - X - X - 甘氨酸 - 天冬氨酸 - 甘氨酸 - 赖氨酸 - 异亮氨酸 - 苯丙氨酸,构成了B环的一部分,并且在包括细菌、藻类和古细菌在内的多种生物体中保守。这个序列比功能性T环的保守性更高,这表明ATP在类PII蛋白中具有重要作用。