Olcott M C, Andersson J, Sjöberg B M
Department of Molecular Biology, Stockholm University, 106 91 Stockholm, Sweden.
J Biol Chem. 1998 Sep 18;273(38):24853-60. doi: 10.1074/jbc.273.38.24853.
We have used 8-azidoadenosine 5'-triphosphate (8-N3ATP) to investigate the nucleotide-binding sites on the NrdD subunit of the anaerobic ribonucleotide reductase from T4 phage. Saturation studies revealed two saturable sites for this photoaffinity analog of ATP. One site exhibited half-maximal saturation at approximately 5 microM [gamma-32P]8-N3ATP, whereas the other site required 45 microM. To localize the sites of photoinsertion, photolabeled peptides from tryptic and chymotryptic digests were isolated by immobilized Al3+ affinity chromatography and high performance liquid chromatography and subjected to amino acid sequence and mass spectrometric analyses. The molecular masses of the photolabeled products of cyanogen bromide cleavage were estimated using tricine-SDS-polyacrylamide gel electrophoresis. Overlapping sequence analysis localized the higher affinity site to the region corresponding to residues 289-291 and the other site to the region corresponding to residues 147-160. Site-directed mutagenesis of Cys290, a residue conserved in all known class III reductases, resulted in a protein that exhibited less than 10% of wild type enzymatic activity. These observations indicate that Cys290 may reside in or near the active site. High performance liquid chromatography analysis revealed that photoinsertion of [gamma-32P]8-N3ATP into the site corresponding to residues 147-160 was almost completely abolished when 100 microM dATP, dGTP, or dTTP was included in the photolabeling reaction mixture, whereas 100 microM ATP, GTP, CTP, or dCTP had virtually no effect. Based on these nucleotide binding properties, we conclude that this site is an allosteric site analogous to the one that has been shown to regulate substrate specificity of other ribonucleotide reductases. There was no evidence for a second allosteric nucleotide-binding site as observed in the anaerobic ribonucleotide reductase from Escherichia coli.
我们使用8-叠氮腺苷5'-三磷酸(8-N3ATP)来研究T4噬菌体厌氧核糖核苷酸还原酶NrdD亚基上的核苷酸结合位点。饱和研究揭示了这种ATP光亲和类似物的两个可饱和位点。一个位点在约5 microM [γ-32P]8-N3ATP时表现出半数最大饱和度,而另一个位点需要45 microM。为了定位光插入位点,通过固定化Al3+亲和色谱和高效液相色谱分离胰蛋白酶和胰凝乳蛋白酶消化产生的光标记肽,并进行氨基酸序列和质谱分析。使用三羟甲基氨基甲烷-SDS-聚丙烯酰胺凝胶电泳估计溴化氰裂解的光标记产物的分子量。重叠序列分析将高亲和力位点定位到对应于残基289-291的区域,另一个位点定位到对应于残基147-160的区域。对所有已知III类还原酶中保守的残基Cys290进行定点诱变,产生的蛋白质表现出不到野生型酶活性的10%。这些观察结果表明Cys290可能位于活性位点内或附近。高效液相色谱分析表明,当在光标记反应混合物中加入100 microM dATP、dGTP或dTTP时,[γ-32P]8-N3ATP向对应于残基147-160区域的光插入几乎完全被消除,而100 microM ATP、GTP、CTP或dCTP几乎没有影响。基于这些核苷酸结合特性,我们得出结论,该位点是一个变构位点,类似于已被证明可调节其他核糖核苷酸还原酶底物特异性的位点。没有证据表明存在如大肠杆菌厌氧核糖核苷酸还原酶中观察到的第二个变构核苷酸结合位点。