Suppr超能文献

Airway smooth muscle contractile, regulatory and cytoskeletal protein expression in health and disease.

作者信息

Stephens N L, Halayko A J

机构信息

Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.

出版信息

Comp Biochem Physiol B Biochem Mol Biol. 1998 Mar;119(3):415-24. doi: 10.1016/s0305-0491(98)00004-2.

Abstract

The major part of research dealing with the biophysical and biochemical properties of airway smooth muscle is based on the assumption that the cells constituting the tissue are homogenous. For striated muscle this has been shown untenable. In recent years almost every property of vascular smooth muscle has been also demonstrated to be heterogeneous. This realization has been late in arriving on the airway smooth muscle research scene. Our own studies have shown that mechanical properties are, in quantitative terms, heterogeneously distributed down the airways and that contractility, for example, in extrapulmonary and intrapulmonary airways differs markedly. Another indication of heterogeneity is derived from studies of the biochemical properties of airway smooth muscle cells (ASMCs) in culture. Dramatic changes in phenotype expression were found with days in culture. Just after isolation from the tissue, the cells were of contractile type and contained mature isoforms of contractile, regulatory and cytoskeletal proteins. After the fourth day in culture the cellular phenotype changed such that contractile filaments diminished rapidly with smooth muscle isoforms being replaced by non-muscle isoforms. The cell assumed secretory or synthetic properties and commenced proliferating rapidly. It is possible that similar changes in phenotype could occur in vivo in cells undergoing hypertrophy or hyperplasia. Thus, a thickened medial layer of the type seen in the walls of airways from asthmatic airways is not necessarily one endowed with increased contractility and, in fact, the latter may be subnormal. Finally, using the so-called motility assay, we studied the velocity of translation of actin filaments by myosin molecules obtained from antigen-sensitized and control airway smooth muscle. We found no change in maximum velocity of actin translation. This was under conditions where the myosin light chain (MLC) was fully phosphorylated. However, in these tissues we found heterogeneity in myosin light chain kinase (MLCK) content which, we inferred, accounted for the difference in shortening velocity between control and sensitized muscle strips in vitro.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验