Suppr超能文献

视点依赖机制是否能推广到某一类别的所有成员?

Do viewpoint-dependent mechanisms generalize across members of a class?

作者信息

Tarr M J, Gauthier I

机构信息

Department of Cognitive and Linguistic Sciences, Brown University, Providence, RI 02912, USA.

出版信息

Cognition. 1998 Jul;67(1-2):73-110. doi: 10.1016/s0010-0277(98)00023-7.

Abstract

Evidence for viewpoint-specific image-based object representations have been collected almost entirely using exemplar-specific recognition tasks. Recent results, however, implicate image-based processes in more categorical tasks, for instance when objects contain qualitatively different 3D parts. Although such discriminations approximate class-level recognition. they do not establish whether image-based representations can support generalization across members of an object class. This issue is critical to any theory of recognition, in that one hallmark of human visual competence is the ability to recognize unfamiliar instances of a familiar class. The present study addresses this questions by testing whether viewpoint-specific representations for some members of a class facilitate the recognition of other members of that class. Experiment 1 demonstrates that familiarity with several members of a class of novel 3D objects generalizes in a viewpoint-dependent manner to cohort objects from the same class. Experiment 2 demonstrates that this generalization is based on the degree of familiarity and the degree of geometrical distinctiveness for particular viewpoints. Experiment 3 demonstrates that this generalization is restricted to visually-similar objects rather than all objects learned in a given context. These results support the hypothesis that image-based representations are viewpoint dependent, but that these representations generalize across members of perceptually-defined classes. More generally, these results provide evidence for a new approach to image-based recognition in which object classes are represented as cluster of visually-similar viewpoint-specific representations.

摘要

几乎完全是通过特定样本识别任务来收集支持基于视点的基于图像的物体表征的证据的。然而,最近的研究结果表明,在更多的分类任务中也存在基于图像的处理过程,例如当物体包含性质不同的三维部分时。尽管这种辨别接近类别级别的识别,但它们并未确定基于图像的表征是否能够支持在一个物体类别的成员之间进行泛化。这个问题对于任何识别理论来说都是至关重要的,因为人类视觉能力的一个标志就是能够识别熟悉类别的不熟悉实例。本研究通过测试一个类别的某些成员的基于视点的表征是否有助于识别该类别的其他成员来解决这个问题。实验1表明,对一类新颖三维物体中几个成员的熟悉程度以视点依赖的方式泛化到同一类别的同类物体上。实验2表明,这种泛化是基于熟悉程度和特定视点的几何独特程度。实验3表明,这种泛化仅限于视觉上相似的物体,而不是在给定情境中学习的所有物体。这些结果支持了这样一种假设,即基于图像的表征是视点依赖的,但这些表征能够在感知定义的类别的成员之间进行泛化。更一般地说,这些结果为基于图像的识别提供了一种新方法的证据,在这种方法中,物体类别被表示为视觉上相似的基于视点的特定表征的聚类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验