Mattingly M, Bailey E A, Dutton A W, Roemer R B, Devasia S
Mechanical Engineering Department, University of Utah, Salt Lake City 84112, USA.
IEEE Trans Biomed Eng. 1998 Sep;45(9):1154-62. doi: 10.1109/10.709559.
Accurate thermal models are needed in hyperthermia cancer treatments for such tasks as actuator and sensor placement design, parameter estimation, and feedback temperature control. The complexity of the human body produces full-order models which are too large for effective execution of these tasks, making use of reduced-order models necessary. However, standard balanced-realization (SBR)-based model reduction techniques require a priori knowledge of the particular placement of actuators and sensors for model reduction. Since placement design is intractable (computationally) on the full-order models, SBR techniques must use ad hoc placements. To alleviate this problem, an extended balanced-realization (EBR)-based model-order reduction approach is presented. The new technique allows model order reduction to be performed over all possible placement designs and does not require ad hoc placement designs. It is shown that models obtained using the EBR method are more robust to intratreatment changes in the placement of the applied power field than those models obtained using the SBR method.
在热疗癌症治疗中,对于诸如致动器和传感器放置设计、参数估计以及反馈温度控制等任务,需要精确的热模型。人体的复杂性产生了全阶模型,这些模型对于有效执行这些任务来说太大了,因此有必要使用降阶模型。然而,基于标准平衡实现(SBR)的模型降阶技术需要关于用于模型降阶的致动器和传感器的特定放置的先验知识。由于在全阶模型上进行放置设计在计算上是棘手的,SBR技术必须使用临时放置。为了缓解这个问题,提出了一种基于扩展平衡实现(EBR)的模型降阶方法。这种新技术允许在所有可能的放置设计上进行模型降阶,并且不需要临时放置设计。结果表明,与使用SBR方法获得的模型相比,使用EBR方法获得的模型对治疗过程中施加功率场放置的变化更具鲁棒性。