Suppr超能文献

B0 不均匀性下磁共振成像的代数重建

Algebraic reconstruction for magnetic resonance imaging under B0 inhomogeneity.

作者信息

Kadah Y M, Hu X

机构信息

Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis 55455, USA.

出版信息

IEEE Trans Med Imaging. 1998 Jun;17(3):362-70. doi: 10.1109/42.712126.

Abstract

In magnetic resonance imaging, spatial localization is usually achieved using Fourier encoding which is realized by applying a magnetic field gradient along the dimension of interest to create a linear correspondence between the resonance frequency and spatial location following the Larmor equation. In the presence of B0 inhomogeneities along this dimension, the linear mapping does not hold and spatial distortions arise in the acquired images. In this paper, the problem of image reconstruction under an inhomogeneous field is formulated as an inverse problem of a linear Fredholm equation of the first kind. The operators in these problems are estimated using field mapping and the k-space trajectory of the imaging sequence. Since such inverse problems are known to be ill-posed in general, robust solvers, singular value decomposition and conjugate gradient method, are employed to obtain corrected images that are optimal in the Frobenius norm sense. Based on this formulation, the choice of the imaging sequence for well-conditioned matrix operators is discussed, and it is shown that nonlinear k-space trajectories provide better results. The reconstruction technique is applied to sequences where the distortion is more severe along one of the image dimensions and the two-dimensional reconstruction problem becomes equivalent to a set of independent one-dimensional problems. Experimental results demonstrate the performance and stability of the algebraic reconstruction methods.

摘要

在磁共振成像中,空间定位通常通过傅里叶编码来实现,这是通过沿着感兴趣的维度施加磁场梯度来实现的,以便根据拉莫尔方程在共振频率和空间位置之间建立线性对应关系。在沿着该维度存在B0不均匀性的情况下,线性映射不成立,并且在采集的图像中会出现空间失真。在本文中,非均匀场下的图像重建问题被表述为第一类线性弗雷德霍姆方程的逆问题。这些问题中的算子使用场映射和成像序列的k空间轨迹来估计。由于已知此类逆问题通常是不适定的,因此采用稳健的求解器、奇异值分解和共轭梯度法来获得在弗罗贝尼乌斯范数意义上最优的校正图像。基于此公式,讨论了用于条件良好的矩阵算子的成像序列的选择,结果表明非线性k空间轨迹能提供更好的结果。该重建技术应用于在图像的一个维度上失真更严重的序列,此时二维重建问题等同于一组独立的一维问题。实验结果证明了代数重建方法的性能和稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验