Suppr超能文献

Shear stress down-regulates gene transcription and production of adrenomedullin in human aortic endothelial cells.

作者信息

Shinoki N, Kawasaki T, Minamino N, Okahara K, Ogawa A, Ariyoshi H, Sakon M, Kambayashi J, Kangawa K, Monden M

机构信息

Department of Surgery II, Osaka University Medical School, Suita, Japan.

出版信息

J Cell Biochem. 1998 Oct 1;71(1):109-15.

PMID:9736459
Abstract

Vascular endothelial cells are potent modulators of vascular tone in response to shear stress. Levels of vasoactive peptides such as adrenomedullin (AM), endothelin-1 (ET-1), C-type natriuretic peptide (CNP), and nitric oxide (NO) are affected by fluid shear stress. AM, a potent vasodilator and suppressor of smooth muscle cell proliferation, contains the shear stress responsive element (SSRE) "GAGACC" in its promoter region. To examine the role of AM in the shear stress response, cultured human aortic endothelial cells (HAoECs) were exposed to fluid shear stresses of 12 and 24 dynes/cm2 in a cone-plate shear stress loading apparatus for various time periods, and the levels of AM gene expression and peptide secretion from HAoECs were measured by Northern blotting analysis and radioimmunoassay (RIA), respectively. Both AM gene transcription and AM peptide levels were down-regulated by fluid shear stress in a time- and magnitude-dependent manner. Our results demonstrate that the normal level of arterial shear stress down-regulates AM expression in HAoECs, suggesting that AM participates in the modulation of vascular tone by fluid shear stress.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验