Suppr超能文献

5S核糖体RNA环E:化学探测及系统发育数据与晶体结构对比

The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure.

作者信息

Leontis N B, Westhof E

机构信息

Chemistry Department, Bowling Green State University, Ohio 43403, USA.

出版信息

RNA. 1998 Sep;4(9):1134-53. doi: 10.1017/s1355838298980566.

Abstract

A significant fraction of the bases in a folded, structured RNA molecule participate in noncanonical base pairing interactions, often in the context of internal loops or multi-helix junction loops. The appearance of each new high-resolution RNA structure provides welcome data to guide efforts to understand and predict RNA 3D structure, especially when the RNA in question is a functionally conserved molecule. The recent publication of the crystal structure of the "Loop E" region of bacterial 5S ribosomal RNA is such an event [Correll CC, Freeborn B, Moore PB, Steitz TA, 1997, Cell 91:705-712]. In addition to providing more examples of already established noncanonical base pairs, such as purine-purine sheared pairings, trans-Hoogsteen UA, and GU wobble pairs, the structure provides the first high-resolution views of two new purine-purine pairings and a new GU pairing. The goal of the present analysis is to expand the capabilities of both chemical probing and phylogenetic analysis to predict with greater accuracy the structures of RNA molecules. First, in light of existing chemical probing data, we investigate what lessons could be learned regarding the interpretation of this widely used method of RNA structure probing. Then we analyze the 3D structure with reference to molecular phylogeny data (assuming conservation of function) to discover what alternative base pairings are geometrically compatible with the structure. The comparisons between previous modeling efforts and crystal structures show that the intricate involvements of ions and water molecules in the maintenance of non-Watson-Crick pairs render the process of correctly identifying the interacting sites in such pairs treacherous, except in cases of trans-Hoogsteen A/U or sheared A/G pairs for the adenine N1 site. The phylogenetic analysis identifies A/A, A/C, A/U and C/A, C/C, and C/U pairings isosteric with sheared A/G, as well as A/A and A/C pairings isosteric with both G/U and G/G bifurcated pairings. Thus, each non-Watson-Crick pair could be characterized by a phylogenetic signature of variations between isosteric-like pairings. In addition to the conservative changes, which form a dictionary of pairings isosterically compatible with those observed in the crystal structure, concerted changes involving several base pairs also occur. The latter covariations may indicate transitions between related but distinctive motifs within the loop E of 5S ribosomal RNA.

摘要

在折叠的、具有结构的RNA分子中,相当一部分碱基参与非经典碱基配对相互作用,这种情况通常发生在内环或多螺旋连接环的背景下。每一个新的高分辨率RNA结构的出现都为指导理解和预测RNA三维结构的工作提供了宝贵的数据,尤其是当所讨论的RNA是一个功能保守的分子时。细菌5S核糖体RNA“环E”区域晶体结构的近期发表就是这样一个事件[科雷尔CC、弗里伯恩B、摩尔PB、施泰茨TA,1997年,《细胞》91:705 - 712]。除了提供更多已确定的非经典碱基对的例子,如嘌呤 - 嘌呤剪切配对、反式 - 霍格施泰因UA和GU摆动对之外,该结构还首次提供了两种新的嘌呤 - 嘌呤配对和一种新的GU配对的高分辨率视图。本分析的目标是扩展化学探测和系统发育分析的能力,以便更准确地预测RNA分子的结构。首先,根据现有的化学探测数据,我们研究对于这种广泛使用的RNA结构探测方法的解释可以吸取哪些教训。然后,我们参照分子系统发育数据(假设功能保守)分析三维结构,以发现哪些替代碱基配对在几何上与该结构兼容。先前的建模工作与晶体结构之间的比较表明,离子和水分子在维持非沃森 - 克里克配对中的复杂参与使得正确识别此类配对中相互作用位点的过程充满危险,除了腺嘌呤N1位点的反式 - 霍格施泰因A/U或剪切A/G对的情况。系统发育分析确定了与剪切A/G等排的A/A、A/C、A/U和C/A、C/C以及C/U配对,以及与G/U和G/G分叉配对等排的A/A和A/C配对。因此,每个非沃森 - 克里克配对都可以由等排样配对之间变异的系统发育特征来表征。除了形成与晶体结构中观察到的配对等排兼容的配对字典的保守变化之外,还发生了涉及几个碱基对协同变化。后者的共变可能表明5S核糖体RNA环E内相关但独特基序之间的转变。

相似文献

1
The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure.
RNA. 1998 Sep;4(9):1134-53. doi: 10.1017/s1355838298980566.
3
Non-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E.
Biophys J. 2003 Jun;84(6):3564-82. doi: 10.1016/S0006-3495(03)75089-9.
6
The solution structure of the loop E region of the 5S rRNA from spinach chloroplasts.
J Mol Biol. 2003 Jan 31;325(5):843-56. doi: 10.1016/s0022-2836(02)01270-6.
7
A proposal for the conformation of loop E in Escherichia coli 5S rRNA.
Biochem Cell Biol. 1995 Nov-Dec;73(11-12):887-97. doi: 10.1139/o95-096.
9
Direct identification of NH...N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy.
Nucleic Acids Res. 1999 Aug 1;27(15):3104-10. doi: 10.1093/nar/27.15.3104.

引用本文的文献

1
All-at-once RNA folding with 3D motif prediction framed by evolutionary information.
Res Sq. 2025 Mar 26:rs.3.rs-5664139. doi: 10.21203/rs.3.rs-5664139/v1.
2
All-at-once RNA folding with 3D motif prediction framed by evolutionary information.
bioRxiv. 2024 Dec 20:2024.12.17.628809. doi: 10.1101/2024.12.17.628809.
3
RNAMotifProfile: a graph-based approach to build RNA structural motif profiles.
NAR Genom Bioinform. 2024 Sep 26;6(3):lqae128. doi: 10.1093/nargab/lqae128. eCollection 2024 Sep.
4
Genetic disruption of the bacterial motif noncoding RNA causes defects in sporulation and aggregation.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2318008121. doi: 10.1073/pnas.2318008121. Epub 2024 Feb 2.
6
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Chem Rev. 2018 Apr 25;118(8):4177-4338. doi: 10.1021/acs.chemrev.7b00427. Epub 2018 Jan 3.
7
The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.
Methods. 2016 Jul 1;103:99-119. doi: 10.1016/j.ymeth.2016.04.025. Epub 2016 Apr 25.
8
5SRNAdb: an information resource for 5S ribosomal RNAs.
Nucleic Acids Res. 2016 Jan 4;44(D1):D180-3. doi: 10.1093/nar/gkv1081. Epub 2015 Oct 20.
9
Codon-Anticodon Recognition in the Bacillus subtilis glyQS T Box Riboswitch: RNA-DEPENDENT CODON SELECTION OUTSIDE THE RIBOSOME.
J Biol Chem. 2015 Sep 18;290(38):23336-47. doi: 10.1074/jbc.M115.673236. Epub 2015 Jul 30.
10
Regulation of the rplY gene encoding 5S rRNA binding protein L25 in Escherichia coli and related bacteria.
RNA. 2015 May;21(5):851-61. doi: 10.1261/rna.047381.114. Epub 2015 Mar 6.

本文引用的文献

2
5S rRNA Data Bank.
Nucleic Acids Res. 1998 Jan 1;26(1):156-9. doi: 10.1093/nar/26.1.156.
3
Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain.
Cell. 1997 Nov 28;91(5):705-12. doi: 10.1016/s0092-8674(00)80457-2.
5
Kinetics of DNA hydration.
J Mol Biol. 1997 Apr 25;268(1):118-36. doi: 10.1006/jmbi.1996.0862.
6
Crystal structure of a group I ribozyme domain: principles of RNA packing.
Science. 1996 Sep 20;273(5282):1678-85. doi: 10.1126/science.273.5282.1678.
9
The conformation of loop E of eukaryotic 5S ribosomal RNA.
Biochemistry. 1993 Feb 2;32(4):1078-87. doi: 10.1021/bi00055a013.
10
The sarcin/ricin loop, a modular RNA.
J Mol Biol. 1995 Mar 17;247(1):81-98. doi: 10.1006/jmbi.1994.0124.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验