Suppr超能文献

Timing of secondary vestibular neuron responses to a range of rotational head movements.

作者信息

Holly J E, McCollum G

机构信息

Department of Mathematics and Computer Science, Colby College, Waterville, ME 04901, USA.

出版信息

Biol Cybern. 1998 Jul;79(1):39-48. doi: 10.1007/s004220050456.

Abstract

Secondary vestibular neurons exhibit a wide variety of responses to a head movement, with the response of each secondary neuron depending upon the particular primary afferents converging onto it. A single head movement is thereby registered in a distributed manner. This paper focuses on implications of afferent convergence to the relative timing of secondary neuron response modulation during rotational movements about a combination of horizontal axes. In particular, the neurons of interest are those that receive input from afferents innervating the vertical semicircular canals, and the movements of interest are those that have a sinusoidal component about one vertical canal axis and a sinusoidal component about another, approximately orthogonal, vertical canal axis. Under these conditions, the present research shows that it is possible for two or more secondary neurons to have a different relative timing of response (i.e., different relative phase of the periodic modulation in firing rate) for different head movements, and for the neurons to switch their order of response for different movements. For particular head movements, those same neurons will respond in phase. From the point of view of the nervous system, the relative timing of neuron responses may tell which movement is taking place, but with certain restrictions as discussed in the present paper. Shown here is that, among those head movements for which the two components of rotation may be at any phase relative to one another and have any relative amplitude, an in-phase response of just two neurons cannot identify a single motion. Two neurons that respond in phase for one motion must respond in phase for an entire range of motions; all motions in that range are thus response-equivalent, in the sense that the pair of neurons cannot distinguish between the two motions. On the other hand, an in-phase response of three neurons can identify a single motion, for certain patterns of primary afferent convergence.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验