Le S Y, Chen J H, Pattabiraman N, Maizel J V
Laboratory of Experimental and Computational Biology, DBS, FCRDC, National Cancer Institute, NIH, Frederick, MD 21701, USA.
J Biomol Struct Dyn. 1998 Aug;16(1):1-11. doi: 10.1080/07391102.1998.10508221.
The three-dimensional (3-D) structure of a RNA pseudoknot that causes the efficient ribosomal frameshifting in the gag-pro region of mouse mammary tumor virus (MMTV) has been determined recently by nuclear magnetic resonance (NMR) studies. But since the structure refinement in the studies did not use metal ions and waters, it is not clear how metal ions participate in the stabilization of the pseudoknot, and what kind of ion-RNA interactions dominate in the tertiary contacts for the RNA pseudoknotting. Based on the reported structure data of the pseudoknot VPK of MMTV, we gradually refined the structure by restrained molecular dynamics (MD) using NMR distance restraints. Restrained MD simulation of the RNA pseudoknot was performed with sodium ions and water molecules. Our results are in good agreement with known NMR data and delineate the importance of the metal ion coordination in the stability of the pseudoknot. In the non-coaxially stacking pseudoknot, stem 1 (S1), stem 2 (S2), and the intervening A14 involves unconventional stacking of base pairs coordinated by Na+ and/or bridging water molecules. A6 and G7 of loop L1 make a perfect base stacking in the major groove and are further stabilized by coordinated Na+ ions and water molecules. The first 4-nucleotide (nt) ACUC of loop L2 form a sharp turn and the following 4-nt AAAA cross the minor groove of S1 and are steadied by interactions with the nucleotides of S , bridging water molecules and coordinated Na+ ions. Our studies suggest that the metal ion plays a crucial role in the RNA pseudoknotting of VPK. In the stacking interior of S1 and S2, the Na+ ion is positioned in the major groove and interacts directly with the carbonyl group O6 of G28 and carbonyl group O4 of U13 in the wobble base pair U13:G28. The ion-RNA interactions in MMTV VPK not only stabilize the RNA pseudoknot but also modify the electrostatic properties of the nucleotides at the critical parts of the pseudoknot VPK.
最近通过核磁共振(NMR)研究确定了一种RNA假结的三维(3-D)结构,该假结在小鼠乳腺肿瘤病毒(MMTV)的gag-pro区域引起有效的核糖体移码。但由于研究中的结构优化未使用金属离子和水,尚不清楚金属离子如何参与假结的稳定,以及在RNA假结形成的三级接触中哪种离子-RNA相互作用占主导。基于已报道的MMTV假结VPK的结构数据,我们使用NMR距离约束通过受限分子动力学(MD)逐步优化结构。对RNA假结进行了含钠离子和水分子的受限MD模拟。我们的结果与已知的NMR数据高度吻合,并阐明了金属离子配位在假结稳定性中的重要性。在非同轴堆积假结中,茎1(S1)、茎2(S2)和中间的A14涉及由Na +和/或桥连水分子配位的碱基对的非常规堆积。环L1的A6和G7在大沟中形成完美的碱基堆积,并通过配位的Na +离子和水分子进一步稳定。环L2的前4个核苷酸(nt)ACUC形成一个急转弯,随后的4个nt AAAA穿过S1的小沟,并通过与S的核苷酸、桥连水分子和配位的Na +离子的相互作用而稳定。我们的研究表明,金属离子在VPK的RNA假结形成中起关键作用。在S1和S2的堆积内部,Na +离子位于大沟中,并与摆动碱基对U13:G28中的G28的羰基O6和U13的羰基O4直接相互作用。MMTV VPK中的离子-RNA相互作用不仅稳定了RNA假结,还改变了假结VPK关键部位核苷酸的静电性质。