Otsuka K, Roullet C M, McDougal P, McCarron D A, Roullet J B
Division of Nephrology, Hypertension and Clinical Pharmacology, Oregon Health Sciences University, Portland 97201-3098, USA.
J Hypertens. 1998 Sep;16(9):1261-6. doi: 10.1097/00004872-199816090-00006.
Carboxyl methylation is a reversible post-translational event which regulates the function of several cellular proteins. Because the human Na+-H+ antiporter (NHE-1) possesses a C-terminal consensus sequence for carboxyl methylation, we examined the role of protein carboxyl methylation in the regulation of intracellular pH homeostasis.
Experiments were conducted using human platelets and N-acetyl-S-trans,trans-farnesyl-L cysteine (AFC), a specific prenylcysteine methyltransferase inhibitor. The effect of AFC on both basal intracellular pH (pHi) and on the kinetic properties of the Na+-H+ antiporter was characterized.
pHi was determined in cell suspensions using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein tetraacetoxymethyl ester, a fluorescent pH indicator. The kinetics properties of the Na+-H+ antiporter activity were determined using platelets acidified with nigericin and challenged with varying extracellular concentrations of Na+.
AFC (20 micromol/l) decreased basal pHi significantly (7.047 +/- 0.011 versus 7.133 +/- 0.012 for control, P< 0.001). The acidification was dose-dependent and reached steady state 3 min after AFC addition. In the absence of extracellular Na+, the platelets were acidified to the same extent with AFC or with ethanol (control): 6.530 +/- 0.031 versus 6.532 +/- 0.031 (P= 0.97). However, upon addition of Na+, the platelets treated with AFC showed a significant decrease in the maximal value for initial pHi recovery compared with controls: 0.788 +/- 0.041 versus 0.983 +/- 0.047 pH/min (P< 0.02). AFC also increased the Hill coefficient (2.89 +/- 0.22 versus 2.14 +/- 0.16, P < 0.03), and tended to decrease K0.5, the [Na+] corresponding to half-maximal activation (51.3 +/- 1.8 versus 60.5 +/- 3.9 mmol/l, P = 0.06) of the antiporter.
Our data indicate that inhibition of carboxyl methylation reduces basal pHi and alters the kinetic properties of the Na+-H+ antiporter in human platelets, suggesting that carboxyl methylation is implicated in the regulation of intracellular pH homeostasis.
羧甲基化是一种可逆的翻译后修饰事件,可调节多种细胞蛋白的功能。由于人类钠氢交换体(NHE-1)具有羧甲基化的C端共有序列,我们研究了蛋白质羧甲基化在调节细胞内pH稳态中的作用。
实验使用人类血小板和N-乙酰-S-反,反-法尼基-L-半胱氨酸(AFC),一种特异性异戊烯基半胱氨酸甲基转移酶抑制剂。表征了AFC对基础细胞内pH(pHi)和钠氢交换体动力学特性的影响。
使用荧光pH指示剂2,7-双羧乙基-5(6)-羧基荧光素四乙酰氧基甲酯在细胞悬液中测定pHi。使用尼日利亚菌素酸化并用不同细胞外浓度的Na+刺激的血小板来测定钠氢交换体活性的动力学特性。
AFC(20 μmol/l)显著降低基础pHi(对照组为7.047±0.011,AFC组为7.133±0.012,P<0.001)。酸化呈剂量依赖性,添加AFC后3分钟达到稳态。在无细胞外Na+的情况下,用AFC或乙醇(对照)处理的血小板酸化程度相同:分别为6.530±0.031和6.532±0.031(P=0.97)。然而,添加Na+后,与对照组相比,用AFC处理的血小板初始pHi恢复的最大值显著降低:分别为0.788±0.041和0.983±0.047 pH/分钟(P<0.02)。AFC还增加了希尔系数(分别为2.89±0.22和2.14±0.16,P<0.03),并倾向于降低K0.5,即对应于反转运体半最大激活的[Na+]浓度(分别为51.3±1.8和60.5±3.9 mmol/l,P=0.06)。
我们的数据表明,羧甲基化的抑制降低了基础pHi并改变了人类血小板中钠氢交换体的动力学特性,提示羧甲基化参与细胞内pH稳态的调节。