Suppr超能文献

通过短杆菌肽A通道电导探测膜表面电荷滴定

Membrane surface-charge titration probed by gramicidin A channel conductance.

作者信息

Rostovtseva T K, Aguilella V M, Vodyanoy I, Bezrukov S M, Parsegian V A

机构信息

Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, Maryland 20892-5626 USA.

出版信息

Biophys J. 1998 Oct;75(4):1783-92. doi: 10.1016/S0006-3495(98)77620-9.

Abstract

We manipulate lipid bilayer surface charge and gauge its influence on gramicidin A channel conductance by two strategies: titration of the lipid charge through bulk solution pH and dilution of a charged lipid by neutral. Using diphytanoyl phosphatidylserine (PS) bilayers with CsCl aqueous solutions, we show that the effects of lipid charge titration on channel conductance are masked 1) by conductance saturation with Cs+ ions in the neutral pH range and 2) by increased proton concentration when the bathing solution pH is less than 3. A smeared charge model permits us to separate different contributions to the channel conductance and to introduce a new method for "bilayer pKa" determination. We use the Gouy-Chapman expression for the charged surface potential to obtain equilibria of protons and cations with lipid charges. To calculate cation concentration at the channel mouth, we compare different models for the ion distribution, exact and linearized forms of the planar Poisson-Boltzmann equation, as well as the construction of a "Gibbs dividing surface" between salt bath and charged membrane. All approximations yield the intrinsic pKain of PS lipid in 0.1 M CsCl to be in the range 2.5-3.0. By diluting PS surface charge at a fixed pH with admixed neutral diphytanoyl phosphatidylcholine (PC), we obtain a conductance decrease in magnitude greater than expected from the electrostatic model. This observation is in accord with the different conductance saturation values for PS and PC lipids reported earlier (, Biochim. Biophys. Acta. 552:369-378) and verified in the present work for solvent-free membranes. In addition to electrostatic effects of surface charge, gramicidin A channel conductance is also influenced by lipid-dependent structural factors.

摘要

我们通过两种策略来调控脂质双分子层表面电荷并评估其对短杆菌肽A通道电导的影响:通过改变本体溶液pH值来滴定脂质电荷,以及用中性脂质稀释带电荷脂质。使用含有CsCl水溶液的二植烷酰磷脂酰丝氨酸(PS)双分子层,我们发现脂质电荷滴定对通道电导的影响被掩盖了:一是在中性pH范围内Cs⁺离子使电导饱和,二是当浴液pH小于3时质子浓度增加。一个涂抹电荷模型使我们能够区分对通道电导的不同贡献,并引入一种测定“双分子层pKa”的新方法。我们使用带电表面电位的古依 - 查普曼表达式来获得质子和阳离子与脂质电荷的平衡。为了计算通道口处的阳离子浓度,我们比较了离子分布的不同模型、平面泊松 - 玻尔兹曼方程的精确形式和线性化形式,以及在盐浴和带电膜之间构建“吉布斯分界面”。所有近似结果都表明,在0.1 M CsCl中PS脂质的固有pKain在2.5 - 3.0范围内。通过在固定pH下用混合的中性二植烷酰磷脂酰胆碱(PC)稀释PS表面电荷,我们观察到电导降低的幅度大于静电模型的预期。这一观察结果与之前报道的PS和PC脂质不同的电导饱和值一致(Biochim. Biophys. Acta. 552:369 - 378),并且在本工作中对无溶剂膜进行了验证。除了表面电荷的静电效应外,短杆菌肽A通道电导还受脂质依赖性结构因素的影响。

相似文献

1
Membrane surface-charge titration probed by gramicidin A channel conductance.
Biophys J. 1998 Oct;75(4):1783-92. doi: 10.1016/S0006-3495(98)77620-9.
2
Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
Biophys J. 1997 Nov;73(5):2489-502. doi: 10.1016/S0006-3495(97)78277-8.
5
Evaluation of surface tension and ion occupancy effects on gramicidin A channel lifetime.
Biophys J. 1988 Apr;53(4):541-8. doi: 10.1016/S0006-3495(88)83134-5.
6
Effects of surface charge on the conductance of the gramicidin channel.
Biochim Biophys Acta. 1979 Apr 19;552(3):369-78. doi: 10.1016/0005-2736(79)90181-0.
9
Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel.
Langmuir. 2012 Nov 13;28(45):15824-30. doi: 10.1021/la302676t. Epub 2012 Nov 2.
10
Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum.
Biophys J. 1984 Jan;45(1):279-87. doi: 10.1016/S0006-3495(84)84154-5.

引用本文的文献

2
Regulation of Gramicidin Channel Function Solely by Changes in Lipid Intrinsic Curvature.
Front Physiol. 2022 Mar 8;13:836789. doi: 10.3389/fphys.2022.836789. eCollection 2022.
3
Divalent Cation Modulation of Ion Permeation in TMEM16 Proteins.
Int J Mol Sci. 2021 Feb 23;22(4):2209. doi: 10.3390/ijms22042209.
4
Scaling Behavior of Ionic Transport in Membrane Nanochannels.
Nano Lett. 2018 Oct 10;18(10):6604-6610. doi: 10.1021/acs.nanolett.8b03235. Epub 2018 Sep 10.
5
Cation-Selective Channel Regulated by Anions According to Their Hofmeister Ranking.
Angew Chem Int Ed Engl. 2017 Mar 20;56(13):3506-3509. doi: 10.1002/anie.201611335. Epub 2017 Feb 15.
6
Local Anesthetics Affect Gramicidin A Channels via Membrane Electrostatic Potentials.
J Membr Biol. 2016 Dec;249(6):781-787. doi: 10.1007/s00232-016-9926-x. Epub 2016 Sep 3.
7
Ion channel activity of the CSFV p7 viroporin in surrogates of the ER lipid bilayer.
Biochim Biophys Acta. 2016 Jan;1858(1):30-7. doi: 10.1016/j.bbamem.2015.10.007. Epub 2015 Oct 14.
9
Channel-forming bacterial toxins in biosensing and macromolecule delivery.
Toxins (Basel). 2014 Aug 21;6(8):2483-540. doi: 10.3390/toxins6082483.
10
Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge.
Biochim Biophys Acta. 2013 Sep;1828(9):2026-31. doi: 10.1016/j.bbamem.2013.05.008. Epub 2013 May 18.

本文引用的文献

1
Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
Biophys J. 1997 Nov;73(5):2489-502. doi: 10.1016/S0006-3495(97)78277-8.
2
Gramicidin channels in phospholipid bilayers with unsaturated acyl chains.
Biophys J. 1997 Sep;73(3):1310-9. doi: 10.1016/S0006-3495(97)78164-5.
3
Lipid bilayer electrostatic energy, curvature stress, and assembly of gramicidin channels.
Biochemistry. 1997 May 13;36(19):5695-701. doi: 10.1021/bi9619841.
4
Gramicidin channel function does not depend on phospholipid chirality.
Biochemistry. 1995 Dec 19;34(50):16404-11. doi: 10.1021/bi00050a022.
5
Engineering the gramicidin channel.
Annu Rev Biophys Biomol Struct. 1996;25:231-58. doi: 10.1146/annurev.bb.25.060196.001311.
6
Structure, energetics, and dynamics of lipid-protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer.
Proteins. 1996 Jan;24(1):92-114. doi: 10.1002/(SICI)1097-0134(199601)24:1<92::AID-PROT7>3.0.CO;2-Q.
8
Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
Biophys J. 1995 Mar;68(3):729-38. doi: 10.1016/S0006-3495(95)80253-5.
9
Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states.
Biophys J. 1993 Jan;64(1):16-25. doi: 10.1016/S0006-3495(93)81336-5.
10
Surface potential of phosphatidylserine monolayers. II. Divalent and monovalent ion binding.
Biochim Biophys Acta. 1981 Jul 20;645(2):170-6. doi: 10.1016/0005-2736(81)90187-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验