Suppr超能文献

Calcium homeostasis in early hamster preimplantation embryos.

作者信息

Lane M, Bavister B D

机构信息

Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

Biol Reprod. 1998 Oct;59(4):1000-7. doi: 10.1095/biolreprod59.4.1000.

Abstract

The development in culture of 1-cell hamster embryos prior to the completion of fertilization is not well understood. In this study it was observed that culture for only 6 h of these early 1-cell embryos collected before pronuclei formation (3 h post-egg activation; PEA) significantly increased intracellular free calcium levels (194.3 +/- 3.1 nM) compared to levels in similarly aged 1-cell embryos collected from the oviduct at 9 h PEA, after pronuclei formation is complete (134.2 +/- 6.8 nM). Not only was the developmental competence of cultured 3-h PEA embryos with elevated intracellular free calcium levels compromised as compared with that of embryos collected from the oviduct at 9 h PEA; these embryos also had impaired cytoplasmic mitochondrial distribution (ratio of 0.62 +/- 0. 06 for cultured embryos compared to 0.44 +/- 0.04 for in vivo-developed embryos) and decreased lactate metabolism (2.93 +/- 0. 22 pmol/embryo per 3 h for cultured embryos compared to 5.37 +/- 0. 36 for in vivo-developed embryos). This impairment in mitochondrial distribution and function and reduced development in culture by 3-h PEA embryos appears related to the ability to regulate intracellular calcium homeostasis. Intracellular free calcium levels were reduced by culture with increased medium magnesium concentrations, calcium channel inhibitors nifedipine or verapamil, or an intracellular calcium chelator. All of these treatments also stimulated development of 3-h PEA embryos to the morula/blastocyst stages and prevented impairment in mitochondrial organization and function. Conversely, culture with low medium magnesium and high calcium concentrations that increased intracellular free calcium levels resulted in low development and reduced mitochondrial function. Therefore, it appears that removal of the early embryo from the oviduct results in an inability to regulate intracellular calcium levels. As increased magnesium concentrations, nifedipine, and verapamil inhibit L-gated calcium channels, it may be a loss of regulation of these channels that alters calcium homeostasis resulting in impaired developmental competence.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验