Suppr超能文献

The cardiac adrenergic system in ischaemia: differential role of acidosis and energy depletion.

作者信息

Simonis G, Marquetant R, Röthele J, Strasser R H

机构信息

University of Heidelberg, Medical Center, Dept. Cardiology, Germany.

出版信息

Cardiovasc Res. 1998 Jun;38(3):646-54. doi: 10.1016/s0008-6363(98)00057-1.

Abstract

OBJECTIVE

Acute myocardial ischaemia has been shown to modulate the beta-adrenergic system and to activate protein kinase C. The aim of this study was to investigate if two important components of ischaemia, i.e. energy depletion or acidosis, may contribute to these changes.

METHODS

Isolated rat hearts were perfused either with anoxia (in the absence of oxygen) or with cyanide in the absence of glucose as models of energy depletion with a loss of high energy phosphates. Alternatively, isolated hearts were perfused with acidic modified Krebs-Henseleit solution to induce acidosis.

RESULTS

Energy depletion induced by cyanide perfusion leads to an increase of beta-adrenergic receptors (81 +/- 7 vs. 50 +/- 3 fmol/mg protein, p < or = 0.05) comparable to the changes observed in ischaemia, yet without any change of total adenylyl cyclase activity or protein kinase C activity. Similar, yet less pronounced changes were induced by anoxic perfusion. Acidic perfusion, in contrast, promotes a translocation of protein kinase C to the plasma membranes, suggesting its rapid activation. Additionally, an increased total forskolin-stimulated activity of adenylyl cyclase (515 +/- 16 vs. 428 +/- 17 pmol/min/mg, p < or = 0.05) was observed. Both were comparable to the sensitization observed in early ischaemia. In acidosis, the density of beta-adrenergic receptors remained unaltered.

CONCLUSIONS

These data suggest that the regulation of cardiac beta-adrenergic receptors is susceptible to energy depletion, but not to acidosis, whereas the intracellular enzymes both adenylyl cyclase and protein kinase C may be regulated by intracellular acidosis. This is the first differentiation of distinct components of ischaemia modulating the beta-adrenergic signal transduction pathway. Both components may be operative in concert in acute myocardial ischaemia and may contribute to the regulation of these components of signal transduction observed in acute ischaemia.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验