Li Z, Secor S M, Lance V A, Masini M A, Vallarino M, Conlon J M
Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, 68178, USA.
Gen Comp Endocrinol. 1998 Oct;112(1):108-14. doi: 10.1006/gcen.1998.7149.
Incubation of heat-denatured plasma from six species occupying different evolutionary positions within the Sarcopterygian lineage [the dipnoan, Protopterus annectens (African lungfish); the urodele, Amphiuma tridactylum (three-toed amphiuma); the colubrid snakes, Pituophis melanoleucus sayi (bullsnake) and Masticophis flagellum (coachwhip); and the lizards Heloderma suspectum (Gila monster) and Varanus Grayi (Gray's monitor)] with trypsin generated bradykinin-related peptides that were detected by radioimmunoassay using an antiserum raised against mammalian bradykinin (BK). The peptides were purified by HPLC and their primary structures were established as lungfish [Tyr1,Gly2,Ala7,Pro8]BK, amphiuma [Phe1,Ile2, Leu5]BK, bullsnake and coachwhip [Val1,Thr6]BK, Gila monster [Leu2, Thr6]BK, and Gray's monitor [Thr6]BK. Monitor BK is identical to the peptide generated in turtle and alligator plasma and coachwhip/bullsnake BK shows one amino acid substitution (Ala1 --> Val) compared with the peptide generated in the plasma of the python. The data provide further evidence for the widespread occurrence of a kallikrein-kininogen system in nonmammalian vertebrates but indicate that the primary structure of BK has been poorly conserved during evolution.