Massari V J, Dickerson L W, Gray A L, Lauenstein J M, Blinder K J, Newsome J T, Rodak D J, Fleming T J, Gatti P J, Gillis R A
Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA.
Brain Res. 1998 Aug 17;802(1-2):205-20. doi: 10.1016/s0006-8993(98)00613-1.
Recent physiological evidence indicates that vagal postganglionic control of left ventricular contractility is mediated by neurons found in a ventricular epicardial fat pad ganglion. In the dog this region has been referred to as the cranial medial ventricular (CMV) ganglion [J.L. Ardell, Structure and function of mammalian intrinsic cardiac neurons, in: J.A. Armour, J.L. Ardell (Eds.). Neurocardiology, Oxford Univ. Press, New York, 1994, pp. 95-114; B.X. Yuan, J.L. Ardell, D.A. Hopkins, A.M. Losier, J.A. Armour, Gross and microscopic anatomy of the canine intrinsic cardiac nervous system, Anat. Rec., 239 (1994) 75-87]. Since activation of the vagal neuronal input to the CMV ganglion reduces left ventricular contractility without influencing cardiac rate or AV conduction, this ganglion contains a functionally selective pool of negative inotropic parasympathetic postganglionic neurons. In the present report we have defined the light microscopic distribution of preganglionic negative inotropic neurons in the CNS which are retrogradely labeled from the CMV ganglion. Some tissues were also processed for the simultaneous immunocytochemical visualization of tyrosine hydroxylase (TH: a marker for catecholaminergic neurons) and examined with both light microscopic and electron microscopic methods. Histochemically visualized neurons were observed in a long slender column in the ventrolateral nucleus ambiguus (NA-VL). The greatest number of retrogradely labeled neurons were observed just rostral to the level of the area postrema. TH perikarya and dendrites were commonly observed interspersed with vagal motoneurons in the NA-VL. TH nerve terminals formed axo-dendritic synapses upon negative inotropic vagal motoneurons, however the origin of these terminals remains to be determined. We conclude that synaptic interactions exist which would permit the parasympathetic preganglionic vagal control of left ventricular contractility to be modulated monosynaptically by catecholaminergic afferents to the NA-VL.
最近的生理学证据表明,迷走神经节后纤维对左心室收缩力的控制是由位于心室心外膜脂肪垫神经节中的神经元介导的。在犬类中,该区域被称为颅内侧心室(CMV)神经节[J.L. 阿德尔,哺乳动物心脏固有神经元的结构与功能,载于:J.A. 阿莫尔、J.L. 阿德尔(编)。《神经心脏病学》,牛津大学出版社,纽约,1994年,第95 - 114页;B.X. 袁、J.L. 阿德尔、D.A. 霍普金斯、A.M. 洛西尔、J.A. 阿莫尔,犬类心脏固有神经系统的大体和微观解剖,《解剖学记录》,239(1994)75 - 87]。由于激活迷走神经对CMV神经节的神经元输入可降低左心室收缩力,而不影响心率或房室传导,因此该神经节包含一群功能上具有选择性的负性变力性副交感神经节后神经元。在本报告中,我们确定了中枢神经系统中从CMV神经节逆行标记的节前负性变力性神经元的光镜分布。一些组织还进行了酪氨酸羟化酶(TH:儿茶酚胺能神经元的标志物)的同时免疫细胞化学可视化处理,并采用光镜和电镜方法进行检查。在腹外侧疑核(NA - VL)中观察到一条细长柱状的组织化学可见神经元。在最后区水平稍前方观察到的逆行标记神经元数量最多。在NA - VL中,常见TH胞体和树突与迷走运动神经元交错分布。TH神经末梢在负性变力性迷走运动神经元上形成轴 - 树突触,然而这些末梢的起源仍有待确定。我们得出结论,存在突触相互作用,这使得副交感神经节前迷走神经对左心室收缩力的控制能够通过NA - VL的儿茶酚胺能传入纤维进行单突触调节。