Suppr超能文献

P物质和神经激肽-1受体在负性变时或负性变传导迷走运动神经元控制中起什么作用?生理学和超微结构分析

What are the roles of substance P and neurokinin-1 receptors in the control of negative chronotropic or negative dromotropic vagal motoneurons? A physiological and ultrastructural analysis.

作者信息

Massari V J, Johnson T A, Gillis R A, Gatti P J

机构信息

Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA.

出版信息

Brain Res. 1996 Apr 9;715(1-2):197-207. doi: 10.1016/0006-8993(95)01583-3.

Abstract

Recent data indicate that there is a cardiotopic organization of negative chronotropic and negative dromotropic neurons in the nucleus ambiguus (NA). Negative dromotropic neurons are found in the rostral ventrolateral NA (rNA-VL), negative chronotropic neurons are found in the caudal ventrolateral NA (cNA-VL), and both types of neurons are found in an intermediate level of the ventrolateral NA (iNA-VL). Substance P (SP) immunoreactive nerve terminals synapse upon negative chronotropic vagal motoneurons in the iNA-VL, and SP microinjections in the NA cause bradycardia. In the present report we have attempted to: (1) define the type of tachykinin receptor which mediates the negative chronotropic effect of SP microinjections into the iNA-VL; (2) define the physiological effect of microinjections of a selective SP agonist into the rNA-VL on atrioventricular (AV) conduction: and (3) find ultrastructural evidence for synaptic interactions of SP-immunoreactive nerve terminals with negative dromotropic vagal motoneurons in the rNA-VL. Microinjections of the excitatory amino acid glutamate (Glu) into the iNA-VL to activate all local vagal preganglionic neurons caused both bradycardia and a decrease in the rate of AV conduction. Injections of the selective neurokinin-1 (NK-1) receptor agonist drug GR-73632 also caused bradycardia, however the rapid onset of agonist induced desensitization prevented an evaluation of potential effects on AV conduction in the iNA-VL. These data suggest that the SP-induced bradycardia which can be elicited from the NA is mediated, at least in part, by NK-1 receptors. Microinjections of Glu into the rNA-VL caused a decrease in AV conduction without an effect on cardiac rate. On the other hand, GR-73632 microinjections into rNA-VL did not affect AV conduction. Following injections of the beta subunit of cholera toxin conjugated to horseradish peroxidase (CTB-HRP) into the left atrial fat pad ganglion which selectively mediates changes in AV conduction, retrogradely labeled neurons were histochemically visualized in the rNA-VL. These tissues were subsequently processed for the simultaneous immunocytochemical visualization of SP, and examined by electron microscopy. Histochemically labeled neurons were large, multipolar, with abundant cytoplasm containing large masses of rough endoplasmic reticulum, and exhibited distinctive dendritic and somatic spines. Unlabeled nerve terminals were noted to form either asymmetric or symmetric synapses with dendrites, dendritic spines, and perikarya of histochemically labeled neurons. SP-immunoreactive nerve terminals were also detected in the rNA-VL. SP terminals typically contained numerous small pleomorphic vesicles, multiple large dense core vesicles, and several mitochondria, and they synapsed upon unlabeled dendritic profiles. A total of 154 SP-immunoreactive nerve terminals were observed on photomicrographs of tissues which also contained histochemically labeled profiles. None made an identifiable synapse with a retrogradely labeled profile on the sections examined. In summary, both physiological and ultrastructural data indicate that SP terminals in the iNA-VL do modify the output of negative chronotropic vagal motoneurons. This effect is mediated by NK-1 receptors. On the other hand both physiological and ultrastructural data indicate that SP terminals in the rNA-VL do not modify the output of negative dromotropic vagal motoneurons. Therefore different mechanisms (neurotransmitters or receptors) mediate the central vagal control of cardiac rate and AV conduction.

摘要

近期数据表明,疑核(NA)中存在负性变时性和负性变传导性神经元的心脏相关组织分布。负性变传导性神经元位于吻侧腹外侧疑核(rNA-VL),负性变时性神经元位于尾侧腹外侧疑核(cNA-VL),而这两种类型的神经元均存在于腹外侧疑核的中间水平(iNA-VL)。P物质(SP)免疫反应性神经末梢与iNA-VL中的负性变时性迷走运动神经元形成突触,并且向NA内微量注射SP会导致心动过缓。在本报告中,我们试图:(1)确定介导向iNA-VL内微量注射SP所产生的负性变时性效应的速激肽受体类型;(2)确定向rNA-VL内微量注射选择性SP激动剂对房室(AV)传导的生理效应;以及(3)寻找SP免疫反应性神经末梢与rNA-VL中负性变传导性迷走运动神经元之间突触相互作用的超微结构证据。向iNA-VL内微量注射兴奋性氨基酸谷氨酸(Glu)以激活所有局部迷走神经节前神经元,可导致心动过缓和AV传导速率降低。注射选择性神经激肽-1(NK-1)受体激动剂药物GR-73632也会引起心动过缓,然而激动剂诱导的脱敏作用迅速出现,妨碍了对其对iNA-VL中AV传导潜在影响的评估。这些数据表明,可从NA诱发的SP诱导的心动过缓至少部分是由NK-1受体介导的。向rNA-VL内微量注射Glu会导致AV传导降低,但对心率无影响。另一方面,向rNA-VL内微量注射GR-73632对AV传导无影响。在选择性介导AV传导变化的左心房脂肪垫神经节内注射与辣根过氧化物酶结合的霍乱毒素β亚基(CTB-HRP)后,在rNA-VL中通过组织化学方法可视化逆行标记的神经元。随后对这些组织进行处理,以便同时进行SP的免疫细胞化学可视化,并通过电子显微镜检查。组织化学标记的神经元体积大,呈多极,细胞质丰富,含有大量粗面内质网,并表现出独特的树突和体细胞棘。未标记的神经末梢与组织化学标记神经元的树突、树突棘和胞体形成不对称或对称突触。在rNA-VL中也检测到了SP免疫反应性神经末梢。SP末梢通常含有许多小的多形性囊泡、多个大的致密核心囊泡和几个线粒体,它们与未标记的树突轮廓形成突触。在同时含有组织化学标记轮廓的组织显微照片上共观察到154个SP免疫反应性神经末梢。在所检查的切片上,没有一个与逆行标记的轮廓形成可识别的突触。总之,生理和超微结构数据均表明,iNA-VL中的SP末梢确实会改变负性变时性迷走运动神经元的输出。这种效应由NK-1受体介导。另一方面,生理和超微结构数据均表明,rNA-VL中的SP末梢不会改变负性变传导性迷走运动神经元的输出。因此,不同的机制(神经递质或受体)介导了中枢对心率和AV传导的迷走神经控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验