Suppr超能文献

Purification and characterization of papaya glutamine cyclotransferase, a plant enzyme highly resistant to chemical, acid and thermal denaturation.

作者信息

Zerhouni S, Amrani A, Nijs M, Smolders N, Azarkan M, Vincentelli J, Looze Y

机构信息

Protein Chemistry Department (CP 609), Faculty of Medicine, Free University of Brussels, Campus Erasme, Route de Lennik, 808, B-1070 Brussels, Belgium.

出版信息

Biochim Biophys Acta. 1998 Sep 8;1387(1-2):275-90. doi: 10.1016/s0167-4838(98)00140-x.

Abstract

Papaya glutamine cyclotransferase (PQC), present in the laticiferous cells of the tropical species Carica papaya, was purified near to homogeneity. Starting from the soluble fraction of the collected plant latex, a combination of ion-exchange chromatography on SP-Sepharose Fast Flow, hydrophobic interaction chromatography on Fractogel TSK Butyl-650 and affinity chromatography on immobilized trypsin provided a purification factor of 279 with an overall yield of 80%. In the course of the purification procedure, the two solvent accessible thiol functions located on the hydrophobic surface of the enzyme were converted into their S-methylthioderivatives. Papaya QC, a glycoprotein with a molecular mass of 33000 Da, contains a unique and highly basic polypeptide chain devoid of disulfide bridges as well as of covalently attached phosphate groups. Its absorption spectrum is dominated by the chromophores tyrosine which, nonetheless, do not contribute to the fluorescence emission of the plant enzyme. With a lambdamax of emission at 338 nm and a moderate susceptibility to be quenched by acrylamide, most of the tryptophyl residues of papaya QC appear to be sterically shielded by surrounding protein atoms. Fluorescence can thus be used to monitor unfolding of this enzyme. Preliminary experiments show that papaya QC is exceptionally resistant to chemical (guanidinium hydrochloride), acid and thermal denaturation. At first sight also, this enzyme exhibits high resistance to proteolysis by the papaya cysteine proteinases, yet present in great excess (around 100 mol of proteinases per mol of PQC) in the plant latex. Altogether, these results awaken much curiosity and interest to further investigate how the structure of this plant enzyme is specified.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验