Uppu R M, Lemercier J N, Squadrito G L, Zhang H, Bolzan R M, Pryor W A
The Biodynamics Institute, Louisiana State University, Baton Rouge, Louisiana, 70803-1800, USA.
Arch Biochem Biophys. 1998 Oct 1;358(1):1-16. doi: 10.1006/abbi.1998.0825.
Nitrosation is an important pathway in the metabolism of nitric oxide, producing S-nitrosothiols that may be critical signal transduction species. The reaction of peroxynitrite with aromatic compounds in the pH range of 5 to 8 has long been known to produce hydroxylated and nitrated products. However, we here present evidence that peroxynitrite also can promote the nitrosation of nucleophiles. We chose phenol as a substrate because the nitrosation reaction was first recognized during a study of the CO2-modulation of the patterns of hydroxylation and nitration of phenol by peroxynitrite (Lemercier et al., Arch. Biochem. Biophys. 345, 160-170, 1997). 4-Nitrosophenol, the principal nitrosation product, is detected at pH 7.0, along with 2- and 4-nitrophenols; 4-nitrosophenol becomes the dominant product at pH >/= 8.0. The yield of 4-nitrosophenol continues to increase even after pH 11.1, 1. 2 units above the pKa of phenol, suggesting that the phenolate ion, and not phenol, is involved in the reaction. Hydrogen peroxide is not formed as a by-product. The nitrosation reaction is zero-order in phenol and first-order in peroxynitrite, suggesting the phenolate ion reacts with an activated nitrosating species derived from peroxynitrite, and not with peroxynitrite itself. Under optimal conditions, the yields of 4-nitrosophenol are comparable to those of 2- and 4-nitrophenols, indicating that the nitrosation reaction is as significant as the nitration of phenolic compounds by peroxynitrite. Low concentrations of CO2 facilitate the nitrosation reaction, but excess CO2 dramatically reduces the yield of 4-nitrosophenol. The dual effects of CO2 can be rationalized if O=N-OO- reacts with the peroxynitrite anion-CO2 adduct (O=N-OOCO-2) or secondary intermediates derived from it, including the nitrocarbonate anion (O2N-OCO-2), the carbonate radical (CO*-3), and NO2. The product resulting from these reactions can be envisioned as an activated intermediate X-N=O (where X is -OONO2, -NO2, or -CO-3) that could transfer a nitrosyl cation (NO+) to the phenolate ion. An alternative mechanism for the nitrosation of phenol involves the one-electron oxidation of the phenolate ion by CO-3 to give the phenoxyl radical and the oxidation of O=N-OO- by CO*-3 to give a nitrosyldioxyl radical (O=N-OO*), which decomposes to give *NO and O2; the *NO then reacts with the phenoxyl radical giving nitrosophenol. Both mechanisms are consistent with the high yields of NO-2 and O2 during the alkaline decomposition of peroxynitrite and the potent inhibitory effect of N-3 on the nitrosation of phenol by peroxynitrite and peroxynitrite/CO2 adducts. The biological significance of the peroxynitrite-mediated nitrosations is discussed.
亚硝化作用是一氧化氮代谢的一条重要途径,会产生可能是关键信号转导物质的S-亚硝基硫醇。长期以来,人们已知过氧亚硝酸根在pH值为5至8的范围内与芳香族化合物反应会生成羟基化和硝化产物。然而,我们在此提供证据表明,过氧亚硝酸根也能促进亲核试剂的亚硝化作用。我们选择苯酚作为底物,是因为亚硝化反应最初是在研究过氧亚硝酸根对苯酚羟基化和硝化模式的CO₂调节作用时被发现的(勒梅西埃等人,《生物化学与生物物理学报》345卷,第160 - 170页,1997年)。在pH 7.0时检测到主要的亚硝化产物4-亚硝基苯酚,同时还有2-硝基苯酚和4-硝基苯酚;在pH≥8.0时,4-亚硝基苯酚成为主要产物。即使在pH 11.1(比苯酚的pKa高1.2个单位)之后,4-亚硝基苯酚的产率仍持续增加,这表明参与反应的是酚盐离子而非苯酚。反应不会生成过氧化氢作为副产物。亚硝化反应对苯酚为零级反应,对过氧亚硝酸根为一级反应,这表明酚盐离子是与源自过氧亚硝酸根的活化亚硝化物种反应,而不是与过氧亚硝酸根本身反应。在最佳条件下,4-亚硝基苯酚的产率与2-硝基苯酚和4-硝基苯酚的产率相当,这表明亚硝化反应与过氧亚硝酸根对酚类化合物的硝化反应一样重要。低浓度的CO₂会促进亚硝化反应,但过量的CO₂会显著降低4-亚硝基苯酚的产率。如果O=N-OO⁻与过氧亚硝酸根阴离子 - CO₂加合物(O=N-OOCO₂⁻)或由其衍生的二级中间体(包括硝基碳酸根阴离子(O₂N-OCO₂⁻)、碳酸根自由基(CO₃⁻)和NO₂)反应,那么CO₂的双重作用就可以得到合理的解释。这些反应产生的产物可以设想为一种活化中间体X-N=O(其中X为 -OONO₂、 -NO₂或 -CO₃),它可以将亚硝酰阳离子(NO⁺)转移到酚盐离子上。苯酚亚硝化的另一种机制涉及酚盐离子被CO₃⁻单电子氧化生成苯氧基自由基,以及O=N-OO⁻被CO₃⁻氧化生成亚硝酰二氧基自由基(O=N-OO),后者分解生成NO和O₂;然后*NO与苯氧基自由基反应生成亚硝基苯酚。这两种机制都与过氧亚硝酸根在碱性分解过程中NO₂⁻和O₂的高产率以及N₃对过氧亚硝酸根和过氧亚硝酸根/CO₂加合物对苯酚亚硝化的强烈抑制作用相一致。文中讨论了过氧亚硝酸根介导的亚硝化作用的生物学意义。