Suppr超能文献

使用具有实施的群体药代动力学参数的一室、二室和三室模型以及贝叶斯方法预测血清万古霉素浓度。

Prediction of serum vancomycin concentrations using one-, two- and three-compartment models with implemented population pharmacokinetic parameters and with the Bayesian method.

作者信息

Wu G, Furlanut M

机构信息

Institute of Clinical Pharmacology and Toxicology, Medical School, University of Udine, Italy.

出版信息

J Pharm Pharmacol. 1998 Aug;50(8):851-6. doi: 10.1111/j.2042-7158.1998.tb03999.x.

Abstract

Although previous studies have shown that vancomycin has a complicated pharmacokinetic profile requiring description using a two- or, better, three-compartment model, until recently predictions of serum vancomycin concentrations have been mainly based on one- or two-compartment models using computer software packages. In this study, we have predicted serum vancomycin concentrations in 59 patients using one-, two- and three-compartment models with implemented population pharmacokinetic parameters in the Abbott PKS program and by use of the Bayesian method. The percentage errors of predictions made using the one-compartment model were smaller when either the Bayesian method or implemented population pharmacokinetic parameters were used (medians of -8.61% and -9.49%, respectively). Predictions using the one-compartment model with the Bayesian method were less biased (median of -1.52 microgmL(-1). The best predictions were those made using the three-compartment model with the Bayesian method-they were most accurate (median of 3.40 microgmL(-1) and highly precise (median of 11.53 microg(2)mL(-1)). The results suggest that predictions made using the one-compartment model with implemented population pharmacokinetic parameters are preferable if no samples are available, otherwise predictions made using the three-compartment model with the Bayesian method are preferable. The results also supported our previous argument that the greater the number of compartments involved in individualization, the better the predictions obtained using the Bayesian method.

摘要

尽管先前的研究表明万古霉素具有复杂的药代动力学特征,需要用二室模型或更好的三室模型来描述,但直到最近,血清万古霉素浓度的预测主要基于使用计算机软件包的一室或二室模型。在本研究中,我们在雅培PKS程序中使用具有群体药代动力学参数的一室、二室和三室模型,并通过贝叶斯方法,预测了59例患者的血清万古霉素浓度。当使用贝叶斯方法或群体药代动力学参数时,使用一室模型进行预测的百分比误差较小(分别为-8.61%和-9.49%的中位数)。使用贝叶斯方法的一室模型预测的偏差较小(中位数为-1.52μg/mL)。最佳预测是使用贝叶斯方法的三室模型做出的——它们最准确(中位数为3.40μg/mL)且精度很高(中位数为11.53μg²/mL)。结果表明,如果没有样本可用,使用具有群体药代动力学参数的一室模型进行预测是更可取的,否则使用贝叶斯方法的三室模型进行预测更可取。结果也支持了我们之前的观点,即个体化涉及的隔室数量越多,使用贝叶斯方法获得的预测就越好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验