Wu J, Hardy D, Kaback H R
Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095-1662, USA.
J Mol Biol. 1998 Oct 9;282(5):959-67. doi: 10.1006/jmbi.1998.2065.
The N-terminal six transmenbrane helices (N6) and the C-terminal six transmembrane helices (C6) of the lactose permease of Escherichia coli, each with a Cys residue, were co-expressed independently, and crosslinking was studied. Proximity of paired Cys residues in helices II (position 49, 52, 53, 56, 57, 60, 63 or 67) and VII (position 227, 230, 231, 234, 238, 241, 242 or 245) or XI (position 350, 353, 354, 357, 361 or 364) was examined by using two homobifunctional thiol-specific crosslinking agents of different lengths (6 or 10 A). The results demonstrate that a Cys residue placed in the periplasmic half of helix II (position 49, 52, 53 or 57) crosslinks to Cys residues in the periplasmic half of helix VII (position 241, 242 or 245). In contrast, no crosslinking is evident with paired-Cys residues in the cytoplasmic halves of helices II (position 60, 63 or 67) and VII (position 227, 230, 231, 234 or 238). Remarkably, a Cys residue in the cytoplasmic half of helix II (position 60, 63 or 67) crosslinks with a Cys residue in the cytoplasmic half of helix XI (position 350, 353 or 354), while paired-Cys residues at positions in the periplasmic halves of the two helices do not crosslink. Therefore, helix II is tilted in such a manner that the periplasmic end is close to helix VII, and the cytoplasmic end is close to helix XI. Furthermore, ligand-binding alters the crosslinking efficiency of paired-Cys residues in helices II and VII or XI, indicating that both interfaces are conformationally active. The results are consistent with the conclusion that ligand-binding induces a scissors-like movement of helices II and VII that increases interhelical distance by 3 to 4 A at the periplasmic ends and decreases the distance by 3 to 4 A at the approximate middle of the two transmembrane helices.
大肠杆菌乳糖通透酶的N端6个跨膜螺旋(N6)和C端6个跨膜螺旋(C6),每个都带有一个半胱氨酸残基,被独立共表达,并对交联进行了研究。研究了螺旋II(位置49、52、53、56、57、60、63或67)和螺旋VII(位置227、230、231、234、238、241、242或245)或螺旋XI(位置350、353、354、357、361或364)中配对半胱氨酸残基的接近程度,使用了两种不同长度(6或10埃)的同型双功能硫醇特异性交联剂。结果表明,位于螺旋II周质侧一半(位置49、52、53或57)的半胱氨酸残基与螺旋VII周质侧一半(位置241、242或245)的半胱氨酸残基发生交联。相反,螺旋II(位置60、63或67)和螺旋VII(位置227、230、231、234或238)胞质侧一半的配对半胱氨酸残基没有明显的交联。值得注意的是,螺旋II胞质侧一半(位置60、63或67)的一个半胱氨酸残基与螺旋XI胞质侧一半(位置350、353或354)的一个半胱氨酸残基发生交联,而两个螺旋周质侧一半位置的配对半胱氨酸残基不发生交联。因此,螺旋II以这样一种方式倾斜,即周质端靠近螺旋VII,胞质端靠近螺旋XI。此外,配体结合改变了螺旋II与螺旋VII或XI中配对半胱氨酸残基的交联效率,表明这两个界面在构象上都是活跃的。这些结果与以下结论一致,即配体结合诱导螺旋II和螺旋VII发生剪刀状运动,在周质端使螺旋间距离增加3至4埃,在两个跨膜螺旋的大约中间位置使距离减少3至4埃。