Suppr超能文献

饥饿诱导的自噬反常地降低了对氧化应激极其敏感的NIT胰岛素瘤细胞对氧化应激的易感性。

Starvation-induced autophagocytosis paradoxically decreases the susceptibility to oxidative stress of the extremely oxidative stress-sensitive NIT insulinoma cells.

作者信息

Olejnicka B T, Dalen H, Baranowski M M, Brunk U T

机构信息

Department of Pathology II, Faculty of Health Sciences, Linköping University, Sweden.

出版信息

Redox Rep. 1997 Oct-Dec;3(5-6):311-8. doi: 10.1080/13510002.1997.11747128.

Abstract

Glucose and amino acid starvation of cells in culture generally enhances their sensitivity to oxidative stress. This is explained by compensatory autophagocytosis, which results in increased amounts of lysosomal low-molecular-weight, redox-active iron, due to the degradation of metallo-proteins, with a potential increase in iron-catalyzed, intralysosomal oxidative reactions. Such reactions diminish the stability of lysosomal membranes, with resultant leakage of hydrolytic enzymes into the cytosol and ensuing cellular degeneration, often of apoptotic type. However, starvation of NIT insulinoma cells, which are normally remarkably sensitive to oxidative stress, actually attenuated the sensitivity to such stress. We found that starved NIT cells rapidly synthesized ferritin. Moreover, ferritin was found to be autophagocytosed, and the lysosomes were stabilized, as assayed by the acridine orange relocation test. We hypothesize that compensatory autophagocytosis during starvation increases the cytosolic pool of redox-active iron, as a reflection of enhanced transportation of low-molecular-weight iron from autophagic lysosomes to the cytosol, resulting in ferritin induction. The newly formed ferritin would, in turn, become autophagocytosed and bind redox-active lysosomal iron in a non-redox-active form. We also suggest that the proposed mechanism may be a way for oxidative stress-sensitive cells to compensate partly for their failing capacity to degrade hydrogen peroxide before it leaks into the acidic vacuolar apparatus and induces intralysosomal oxidative stress. The insulin-producing beta cell may belong to this type of cells.

摘要

培养细胞中的葡萄糖和氨基酸饥饿通常会增强它们对氧化应激的敏感性。这可以通过代偿性自噬来解释,由于金属蛋白的降解,自噬会导致溶酶体中低分子量的、具有氧化还原活性的铁含量增加,从而可能增加铁催化的溶酶体内氧化反应。这些反应会降低溶酶体膜的稳定性,导致水解酶泄漏到细胞质中,进而引发细胞变性,通常为凋亡类型。然而,正常情况下对氧化应激非常敏感的NIT胰岛素瘤细胞饥饿后,其对这种应激的敏感性实际上减弱了。我们发现饥饿的NIT细胞会迅速合成铁蛋白。此外,通过吖啶橙重新定位试验检测发现铁蛋白被自噬吞噬,溶酶体得以稳定。我们推测,饥饿期间的代偿性自噬会增加细胞质中具有氧化还原活性的铁池,这反映了低分子量铁从自噬溶酶体向细胞质的运输增强,从而导致铁蛋白的诱导。新形成的铁蛋白反过来会被自噬吞噬,并以非氧化还原活性的形式结合具有氧化还原活性的溶酶体铁。我们还认为,所提出的机制可能是氧化应激敏感细胞部分补偿其在过氧化氢泄漏到酸性液泡装置并诱导溶酶体内氧化应激之前降解能力下降的一种方式。产生胰岛素的β细胞可能属于这类细胞。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验