Suppr超能文献

基于自适应局部三角变换的哮鸣音分析

Wheezing Lung Sounds Analysis with adaptive local trigonometric transform.

作者信息

Ademovic E, Pesquet J C, Charbonneau G

机构信息

Laboratoire des Signaux et Systèmes, CNRS/Univ. Paris-Sud and GdR-PRC ISIS, ESE, Gif sur Yvette, France.

出版信息

Technol Health Care. 1998 Jun;6(1):41-51.

PMID:9754683
Abstract

Wheezes are abnormal sounds which are known to be relevant to Chronic Obstructive Pulmonary Diseases (COPD). The analysis of such signals is especially useful in patient monitoring or pharmacology. Respiratory sounds are dependent on the flow and the volume. Furthermore, they can be the result of a complex mixture of events. The analysis of lung sounds can be greatly improved with time-frequency techniques because these methods highlight the evolution of the spectra of events. In this paper, we present the application of the Adaptive Local Trigonometric Decomposition (ALTD) to lung sound analysis. This analysis provides an optimal representation of the signal in the time-frequency domain with a lattice which is adapted in time. In our work, the parameterization of the ALTD is studied for the detection of wheezing phenomena.

摘要

哮鸣音是已知与慢性阻塞性肺疾病(COPD)相关的异常声音。对此类信号的分析在患者监测或药理学中特别有用。呼吸音取决于气流和容积。此外,它们可能是多种复杂事件混合的结果。使用时频技术可以大大改善肺音分析,因为这些方法突出了事件频谱的演变。在本文中,我们展示了自适应局部三角分解(ALTD)在肺音分析中的应用。这种分析通过一个随时间自适应的格架在时频域中提供信号的最优表示。在我们的工作中,研究了ALTD的参数化以检测哮鸣现象。

相似文献

6
Real time analysis of lung sounds.肺音实时分析
Technol Health Care. 1998 Jun;6(1):3-10.
7
Nonlinear analysis of wheezes using wavelet bicoherence.使用小波双相干性对哮鸣声进行非线性分析。
Comput Biol Med. 2007 Apr;37(4):563-70. doi: 10.1016/j.compbiomed.2006.08.007. Epub 2006 Sep 29.
9
Analysis of wheezes using wavelet higher order spectral features.利用小波高阶谱特征分析喘鸣
IEEE Trans Biomed Eng. 2010 Jul;57(7):1596-610. doi: 10.1109/TBME.2010.2041777. Epub 2010 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验