Suppr超能文献

大肠杆菌二氢叶酸还原酶的拓扑突变

Topological mutation of Escherichia coli dihydrofolate reductase.

作者信息

Iwakura M, Takenawa T, Nakamura T

机构信息

National Institute of Bioscience and Human-Technology, Tsukuba, Ibaraki, 305-8566, Japan.

出版信息

J Biochem. 1998 Oct;124(4):769-77. doi: 10.1093/oxfordjournals.jbchem.a022178.

Abstract

Proteins appear to contain structural elements which determine the folded structure. If such elements are present, the order of structural elements in the primary structure, i.e. the chain topology, can be disregarded for building of the folded tertiary structure, when they are properly connected to each other by proper linkers. To experimentally examine this, "topological" mutants (designated as GHF33 and GHF34) of Escherichia coli dihydrofolate reductase (DHFR) were designed and constructed by switching two amino acid sequence parts containing the betaF strand and betaG-betaH strands in the primary sequence. In this way, the chain topology of wild-type DHFR, betaA-->alphaB-->betaB-->alphaC-->betaC--> betaD-->alphaE-->betaE-->al phaF-->betaF-->betaG-->betaH, was changed to betaA-->alphaB-->betaB-->alphaC-->betaC--> betaD-->alphaE-->betaE-->al phaF-->betaG-->betaH-->betaF. Such topological mutant proteins were stably expressed and accumulated in E. coli cells, and highly purified. Molecular mass measurements of the purified proteins and their proteolytic fragments confirmed that GHF33 and GHF34 had the designed sequence. In terms of kcat, the GHF33 and GHF34 proteins showed about 10 and 20% of the DHFR activity of the wild-type with Km values of 3.3 microM (GHF33) and 2.1 microM (GHF34), respectively. The topological mutants showed a cooperative two-state transition in urea-induced unfolding experiments with DeltaGH2O values of 4.0 and 4.8 kcal/mol. Whereas, the Km and DeltaGH2O values for wild-type DHFR were 0.9 microM and 6.1 kcal/mol, respectively. The significance of the topological mutations was discussed with respect to protein folding and protein evolution.

摘要

蛋白质似乎含有决定其折叠结构的结构元件。如果存在这样的元件,当它们通过合适的连接子彼此正确连接时,在构建折叠的三级结构时,可以忽略一级结构中结构元件的顺序,即链拓扑结构。为了通过实验检验这一点,通过切换一级序列中包含βF链和βG-βH链的两个氨基酸序列部分,设计并构建了大肠杆菌二氢叶酸还原酶(DHFR)的“拓扑”突变体(命名为GHF33和GHF34)。通过这种方式,野生型DHFR的链拓扑结构,即βA→αB→βB→αC→βC→βD→αE→βE→αF→βF→βG→βH,被改变为βA→αB→βB→αC→βC→βD→αE→βE→αF→βG→βH→βF。这种拓扑突变蛋白在大肠杆菌细胞中稳定表达并积累,且得到了高度纯化。对纯化蛋白及其蛋白水解片段的分子量测量证实,GHF33和GHF34具有设计的序列。就kcat而言,GHF33和GHF34蛋白分别显示出野生型DHFR活性的约10%和20%,Km值分别为3.3μM(GHF33)和2.1μM(GHF34)。在尿素诱导的去折叠实验中,拓扑突变体显示出协同的两态转变,ΔGH2O值分别为4.0和4.8 kcal/mol。而野生型DHFR的Km和ΔGH2O值分别为0.9μM和6.1 kcal/mol。讨论了拓扑突变在蛋白质折叠和蛋白质进化方面的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验