Suppr超能文献

脱氢大豆皂苷-I对大电导钙激活钾通道的激活机制

Mechanism of maxi-K channel activation by dehydrosoyasaponin-I.

作者信息

Giangiacomo K M, Kamassah A, Harris G, McManus O B

机构信息

Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.

出版信息

J Gen Physiol. 1998 Oct;112(4):485-501. doi: 10.1085/jgp.112.4.485.

Abstract

Dehydrosoyasaponin-I (DHS-I) is a potent activator of high-conductance, calcium-activated potassium (maxi-K) channels. Interaction of DHS-I with maxi-K channels from bovine aortic smooth muscle was studied after incorporating single channels into planar lipid bilayers. Nanomolar amounts of intracellular DHS-I caused the appearance of discrete episodes of high channel open probability interrupted by periods of apparently normal activity. Statistical analysis of these periods revealed two clearly separable gating modes that likely reflect binding and unbinding of DHS-I. Kinetic analysis of durations of DHS-I-modified modes suggested DHS-I activates maxi-K channels through a high-order reaction. Average durations of DHS-I-modified modes increased with DHS-I concentration, and distributions of these mode durations contained two or more exponential components. In addition, dose-dependent increases in channel open probability from low initial values were high order with average Hill slopes of 2.4-2.9 under different conditions, suggesting at least three to four DHS-I molecules bind to maximally activate the channel. Changes in membrane potential over a 60-mV range appeared to have little effect on DHS-I binding. DHS-I modified calcium- and voltage-dependent channel gating. 100 nM DHS-I caused a threefold decrease in concentration of calcium required to half maximally open channels. DHS-I shifted the midpoint voltage for channel opening to more hyperpolarized potentials with a maximum shift of -105 mV. 100 nM DHS-I had a larger effect on voltage-dependent compared with calcium-dependent channel gating, suggesting DHS-I may differentiate these gating mechanisms. A model specifying four identical, noninteracting binding sites, where DHS-I binds to open conformations with 10-20-fold higher affinity than to closed conformations, explained changes in voltage-dependent gating and DHS-I-induced modes. This model of channel activation by DHS-I may provide a framework for understanding protein structures underlying maxi-K channel gating, and may provide a basis for understanding ligand activation of other ion channels.

摘要

脱氢大豆皂苷-I(DHS-I)是一种高效的大电导钙激活钾通道(maxi-K通道)激活剂。将单通道整合到平面脂质双分子层后,研究了DHS-I与牛主动脉平滑肌maxi-K通道的相互作用。纳摩尔量的细胞内DHS-I导致通道开放概率高的离散事件出现,这些事件被明显正常的活动期打断。对这些时期的统计分析揭示了两种明显可分离的门控模式,这可能反映了DHS-I的结合和解离。对DHS-I修饰模式持续时间的动力学分析表明,DHS-I通过高阶反应激活maxi-K通道。DHS-I修饰模式的平均持续时间随DHS-I浓度增加,且这些模式持续时间的分布包含两个或更多指数成分。此外,在不同条件下,通道开放概率从低初始值的剂量依赖性增加是高阶的,平均希尔斜率为2.4 - 2.9,表明至少三到四个DHS-I分子结合才能最大程度激活通道。在60 mV范围内的膜电位变化似乎对DHS-I结合影响很小。DHS-I改变了钙和电压依赖性通道门控。100 nM DHS-I使通道半最大开放所需的钙浓度降低了三倍。DHS-I将通道开放的中点电压向更超极化的电位移动,最大移动为 -105 mV。与钙依赖性通道门控相比,100 nM DHS-I对电压依赖性通道门控的影响更大,表明DHS-I可能区分这些门控机制。一个指定四个相同、非相互作用结合位点的模型解释了电压依赖性门控和DHS-I诱导模式的变化,其中DHS-I与开放构象的结合亲和力比与关闭构象高10 - 20倍。这种DHS-I激活通道的模型可能为理解maxi-K通道门控背后的蛋白质结构提供一个框架,也可能为理解其他离子通道的配体激活提供基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94da/2229427/f2edf501b17f/JGP7761.f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验