Suppr超能文献

修订并验证用于竞争性搜索的随机搜索模型。

Revising and validating the random search model for competitive search.

作者信息

Chan A H, Courtney A J

机构信息

Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong.

出版信息

Percept Mot Skills. 1998 Aug;87(1):251-60. doi: 10.2466/pms.1998.87.1.251.

Abstract

A random search model was fit to a total of 2592 visual search times on a single-target detection task. By using a competing homogeneous background and uniform stimulus material, specifying viewing distance, controlling the presentation of search task material, and eliminating some options for extreme search strategies, very high correlation coefficients were found when a random search model was fit to both the individual data and to pooled data. A response time parameter was incorporated into the traditional random-search model and very good predictions of search performance were obtained.

摘要

一个随机搜索模型被用于拟合单目标检测任务中的总共2592次视觉搜索时间。通过使用具有竞争力的同质背景和均匀的刺激材料、指定观察距离、控制搜索任务材料的呈现以及消除一些极端搜索策略的选项,当随机搜索模型拟合个体数据和汇总数据时,发现了非常高的相关系数。一个反应时间参数被纳入传统的随机搜索模型中,并获得了对搜索性能的非常好的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验