Suppr超能文献

暗适应小鼠的瞳孔对稳定视网膜光照的极端反应性。

Extreme responsiveness of the pupil of the dark-adapted mouse to steady retinal illumination.

作者信息

Pennesi M E, Lyubarsky A L, Pugh E N

机构信息

Department of Psychology and Institute of Neurological Sciences, University of Pennsylvania, Philadelphia 19104-6196, USA.

出版信息

Invest Ophthalmol Vis Sci. 1998 Oct;39(11):2148-56.

PMID:9761294
Abstract

PURPOSE

To measure the dependence of the size of the pupils of mice on steady retinal illumination.

METHODS

Anesthetized C57BL/6 mice aged 7 to 8 weeks were placed in a ganzfeld chamber in darkness, and in monochromatic (510 nm) and white light whose intensity was varied more than 6 log units. The pupils of the mice were photographed with an infrared video camera and recorded on videotape and the pupil areas determined by digital image analysis of the video recordings.

RESULTS

Fully dark-adapted murine pupils had an area of 2.29 +/- 0.35 mm2. The minimum pupil size at saturating intensity was 0.10 +/- 0.05 mm2. The steady state pupil area declined to half its dark-adapted maximum when ganzfeld luminance was 10(-5) scotopic candela (scot. cd) per meter squared. Pupil area declined to 20% of the dark-adapted magnitude at approximately 10(-3) scot. cd/m2.

CONCLUSIONS

The mouse pupil can regulate retinal illumination by a factor exceeding 20. The neural circuitry that determines steady state murine pupil size is extremely sensitive to retinal illumination and under these experimental conditions is controlled almost exclusively by rod signals. This follows, because the ganzfeld illuminance (10(-5) scot. cd/m2) that causes the pupil to constrict to half its dark-adapted value corresponds to only approximately 0.01 photoisomerization per rod per second, whereas 80% reduction in pupil area occurs at approximately 1 photoisomerization per rod per sec. Based on this extreme responsiveness to steady illumination, the hypothesis is proposed that the murine pupil functions to protect a retinal circuit that can become saturated at extremely low photon capture rates. General principles of dark-adapted retinal circuitry support the identification of the first three neurons in the circuit as the rod, the rod bipolar, and the AII-amacrine. The rod and rod bipolar neurons do not approach saturation at the intensities at which the pupil constricts, however, and it seems unlikely that the AII-amacrine does. Thus the retinal neurons protected from saturation by the mouse pupil constrictions are probably ganglion cells with large receptive fields that have sustained responses.

摘要

目的

测量小鼠瞳孔大小对视网膜稳定光照的依赖性。

方法

将7至8周龄的麻醉C57BL/6小鼠置于暗室中的全视野箱内,以及强度变化超过6个对数单位的单色光(510纳米)和白光下。用红外摄像机拍摄小鼠的瞳孔,并记录在录像带上,通过对录像进行数字图像分析来确定瞳孔面积。

结果

完全暗适应的小鼠瞳孔面积为2.29±0.35平方毫米。饱和强度下的最小瞳孔大小为0.10±0.05平方毫米。当全视野亮度为每平方米10^(-5) 暗视坎德拉(scot. cd)时,稳态瞳孔面积降至暗适应最大值的一半。在约10^(-3) scot. cd/平方米时,瞳孔面积降至暗适应大小的20%。

结论

小鼠瞳孔可将视网膜光照调节超过20倍。决定小鼠稳态瞳孔大小的神经回路对视网膜光照极其敏感,在这些实验条件下几乎完全由视杆信号控制。之所以如此,是因为使瞳孔收缩至暗适应值一半的全视野照度(10^(-5) scot. cd/平方米)仅相当于每秒每根视杆约0.01次光异构化,而瞳孔面积减少80%发生在每秒每根视杆约1次光异构化时。基于对稳定光照的这种极端反应性,提出假说:小鼠瞳孔的功能是保护在极低光子捕获率下可能会饱和的视网膜回路。暗适应视网膜回路的一般原理支持将回路中的前三个神经元识别为视杆、视杆双极细胞和AII无长突细胞。然而,视杆和视杆双极神经元在瞳孔收缩时的强度下不会接近饱和,AII无长突细胞似乎也不会。因此,通过小鼠瞳孔收缩而免受饱和影响的视网膜神经元可能是具有大感受野且有持续反应的神经节细胞。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验