Suppr超能文献

Time to peak tidal expiratory flow and the neuromuscular control of expiration.

作者信息

van der Ent C K, van der Grinten C P, Meessen N E, Luijendijk S C, Mulder P G, Bogaard J M

机构信息

Wilhelmina Children's Hospital, University Hospital for Children and Youth, Dept of Pediatric Pulmonology, Utrecht, The Netherlands.

出版信息

Eur Respir J. 1998 Sep;12(3):646-52. doi: 10.1183/09031936.98.12030646.

Abstract

The ratio of the time needed to reach peak tidal expiratory flow (tPTEF) and the duration of expiration (tE) is used to detect airflow obstruction in young children. tPTEF is decreased in patients with asthma, but knowledge about the physiological determinants of this parameter is scarce. This study examined the relationship between tPTEF and postinspiratory activities of inspiratory muscles and evaluated the effects of changing sensory information from the lung. Airflow patterns and electromyographic (EMG) activity of inspiratory muscles were recorded in seven spontaneously breathing, anaesthetized cats. The trachea was cannulated and, as a result, the larynx and upper airways were bypassed. Changes in postinspiratory muscle activity were induced by changing afferent sensory nerve information (by cooling the vagus nerves, by administration of histamine and by additional application of continuous positive airway pressure (CPAP)). Durations of postinspiratory activities of the diaphragm and intercostal muscles (characterized by their time constants tau diaphr and tau interc) correlated strongly with tPTEF (r=0.85 and 0.77, respectively). Tau diaphr, tau interc and tPTEF were significantly increased during cooling of the vagus nerves (4-8 degrees C) compared with values at 22 and 37 degrees C (p<0.05). Conversely, administration of histamine and CPAP caused significant decreases in tau diaphr, tau interc and tPTEF, which were absent during cooling of the vagus nerves. In conclusion, the time needed to reach peak tidal expiratory flow is highly influenced by the activities of inspiratory muscles during the early phase of expiration which, in turn, depend on the activities of vagal receptors in the lung.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验